
SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

0
0

The Parallel Decomposition of Linear Programs

by
Robert Entriken

TECHNICAL REPORT SOI 89-17

November 1989

Research and reproduction of this report were partially supported by the National Science Foun-
dation grants DMS 8913089, DDM-8814253 and ECS-8715153; U.S. Department of Energy grants
DE-FG03-87-ER-25028 and DE-FG03-87ER25030; the Office of Naval Research grant N00014-89-J-
1359 a d contract N00014-87-K-0142.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the au-thor anJ do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This documenm ha been approved for public release and sale; its distribution is unlimited.

89 12 13 045

0

Abstract

This thesis introduces a new calculus for manipulating linear-program decomposition

schemes. A linear program is represented by a communication unctwork, which is

decomposed by splitting nodes in two, and a transformation is defined to recover

subproblems from the network. We also define a dual-symnetric oracle that provides

solutions to linear programs, and can be performed by the simplex method, nested

decomposition, and finally, parallel decomposition.

Two important classes of linear program serve as examples for the above calculus:

staircase linear programs and stochastic linear programs. For the former case, a

sophisticated yet experimental computer code has been written for an IBM 3090/001E

with six processors. The code performs the parallel decomposition algorithm and is

tested on twenty-two small to medium sized real-world" problems. Experiments

show that in addition to speedups provided by decomposition alone, performance is

improved by using parallel processors.)

Accesion For
N'TIS CF I¢ &

U J,.t L

By
ti:-I ,b .Ii.'- I

Av,vkI • !.,y ,.'o:r~e.S

Dist

Acknowledgments

In the beginning Professor George Dantzig offered me support and guidance into the
field of large-scale systems. I wanted to do something big, and with his encouragement

I did. Patrick McAllister, Michael Saunders, and John Stone taught ine how to handle

the big computers and the large, capricious linear programs. They contributed the
seed and early directions of growth. These early sprouts arc now lofty branches. They

were thickened by wonderful experiences at the Oak Ridge National Laboratory and

the IBM T. J. Watson Research Center. At these places A gained access to the world
of parallel computing, and the people there were always eager to explore promising
new ideas.

Writing this thesis has taught me about coming to closure on a thought; sweating

he details, focusing and converging. This would not have been possible without the

A.lp of my readers: George Dantzig, Alan Hoffman, and Michael Saunders. Other

prIcelss sounding boards were Chuck Romine at ORNL, and John Forrest, David
Jensen, and Alan King at IBM. They cleared the fog and helped me to see the true
structure of my thoughts.

Family is the fiber of our society that insurer ".v against difficult times. I have felt

at home with my colleagues and friends and ,'laIves. At Stanford, I have the Opera-
tions Research Department, 661 Forrest, and Breakers Eating Club. In Philadelphia,
I am proud to have the eternal backing of my parents, brothers and sister, and ex-
tended fami!y.

For all this I am grateful.

R.E.

Palo Alto, California
August, 1989

i1

Contents

Abstract . ii
Ackiowledgments .. i
Table of Contents iv
List of Tables A
List of Figur.s vii
Notation ix

1 Symbolic Decomposition 1
1.1 Goldman's Resolution Theorem 5
1.2 Solution Properties of Linear Programs 6
1.3 Dantzig-Wolfe Decomposition 9

1.3.1 The D-W Subproblems 9
1.3.2 The Dantzig-Wolfe Method 11
1.3.3 The D. W Communication Network 15

1.4 Benders Decomposition 20
1.4.1 The Subproblcms 20
1.4.2 The Benders Method 22
1.1.3 Dual Communication Network Theory 24

1.5 Subproblem Interfaces 27
1.6 Summary 30

2 Characterizing Communication Networks 32
2.1 Nested Decomposition 33
2.2 Characterizing 3 41
2.3 Characterizing 9N..... 42
2.4 Summary 53

3 Parallel Decomposition 55
3.1 Starting Information 57

iv

3.1.1 The Problem Description 57
3.1.2 Thc Com muni cation Network Description 58

3.2 Intermediate Information 59
3.2.1 True Incidence Gra~ph 59
3.2.2 Arc Index Scts 60
3.2.3 Partition Graph Description. 62

3.3 Forming Subproblems 64
3.3.1 Thc Formulation Procedure. 65
3.3.2 Summary. 72

3.4 Thc Parallel Oracle 73

4 Results for Staircase Linear Pirograins 78
4.1 Gcneral Information 9
4.2 Testing 6

'1.2.1 The'Test Environment. 7
4.2.2 The Test Suitec.. S
4.2.3 Test Designs and Results. 9
4.2.4 Performnance Extrapolations 101

4.3 Conclusions 103

A Examiple Subproblemi Formulations 105
A.1 Block Diagonal Example. 106
A.2 Staircase Example 109
A.3 Two-Stage Stochastic Example. 112
A.4 Dense Example 117

B The Test Problemi-s 124

0 Tables 135
0.1 Constant Number of Subproblems. 135
0.2 Varying the Number of Subproblems. 1412
0.3 Varying the Number of Processors. 1441

Bibliography 145

v

List of Tables

1.1 Solutions of a primal formulation 8

2.1 The Elements of 3 . 41

3.1 Original variables 66
3.2 Original data 67
3.3 Added variables 68
3.4 Added data 70
3.5 Non-negativity. 71
3.6 Constraint types 72
3.7 Template for generating subproblems 73

4.1 The life of a job 83
4.2 Message sizes. 86
4.3 Test problem dimensions 88
4.4 Test problem step dimensions 89
4.5 Shortfalls in measuring work 93

C.1 Constant number of subproblems 136
C.2 Constant number of subproblems 137
C.3 Constant number of subproblems 138
C.4 Constant number of subproblems 139
C.5 Constant number of subproblems 140
C.6 Constant number of subproblems 141
C.7 Work for a varying number of subproblems 142
C.8 Time for a varying number of subproblems143
C.9 Speedup for a varying number of subproblems143
0.10 Power, Work and Time for a varying number of processors144

vi

List of Figures

1.1 Partitioning variables and constraints 2
1.2 Symbolic Decomposition covered by Chapter One 3
1.3 Partitioning constraints and set intersection 12
1.4 Subproblem communication and partial representation of A2...... .. 12
1.5 Partitioning constraints and communication 24

2.1 Symbolic Decomposition covered by Chapter Two 33
2.2 Spitting the bottom node 35
2.3 Splitting the top node 37
2.4 Cross splitting the bottom node 38
2.5 The elements of 3 . 42
2.6 Splitting a middle node 44
2.7 Proof of moving up arcs 48
2.8 The generic node 48
2.9 The 4-node generic network 51

3.1 Strings of work 56
3.2 An incidence graph 60
3.3 Partition graphs from splitting the bottom node 64

4.1 Dimensions of a step 80
4.2 Linear communieation network for staircase pattern 82
4.3 Used CPU power for each test problem 90
4.4 Strings of work 91
4.5 The Heisenbcrg Principle 94
4.6 Work required to solve each test problem 95
4.7 Time required to solve each test problem 95
4.8 Speedup over MINOS for each test problem 96
4.9 Speedup over DECOMP/1 for each test problem 97

vii

1.10 Work to solve SCSDS lsi:g incrcasingly finer partitions. 98
4.11 Time vcrsus the number of subproblems for SCSDS 99
4.12 Speedup versus the number of subproblcms for SCSDS 99
4.13 Work and time versus processors for SCSDS 100
4.14 Power versus proccssors for SCSD8. !01
4.15 Speedup over DECOMP/I for cxtending staircases 102
'1.16 Speedup ovcr DI'COIMP/I for more complex staircases103

131 3ima f IE2 mgnfiato =...........................125
B.1 Bitmap of DIET2 (magnification = 2.. 125
B.2 Bitmap of DIT3 (magnification = 126

115 ima f OGR (aniiato =.........................126-
13.6Bitmp ofSCOPION(m---fictio =.................... 125

B.3 Bitmap of DIET7 (magnification =)..
B.8 Bitmap of SC205 (magnification =. 12L) 126
B.5 Bitmap of SCAGX7 (magnification =). 129

11.0 itapofGRW?(mgniictin 129
13.6 Bitmap of SCORPION (magnification = ,... 130

11.2 itapofSTIR(mgnfictin 120

B.7 Bitmap of SCAOR25 (magnification 131

11.'1Bima o PLO'4 maniictin =..........................131

1.1 Bitmap of SCTAPI (magnification =....)................. 128

13.1 Bitap o GR~l magnfiction =........................13

13.9 Bitmap of SCFXMI (magnification =. 129
B.10 Bitmap of SRO\V (magnification =.. 129
B.I Bitmap of SCSD1 (magnification = 130
B.12 Bitmap of STAIR (magnification =130
B.13 Bitmap of SCRSS (magnification = 131
B.14t Bitmap of PILOT, ' (magnification =).B.15 Bitmap of SCFXM2 (magnification = ' 3

B.16 Bitmap of GRO\VI5 (magnification = s'0).. 3
B.17 Bitmap of SCSD6 (,magnification = XM-L) 132
B.18 Bitmap of SCFXN13 (imagnification = 1 0 --) 133
B.19 Ditinap of ScT'AP2 (magnification r) 133
B.20 Bitmap of GRO\V22 (m agn ii cation = ' I1000
B.21 Bitmnap of SCTAP3 (magnification = I"M, IN.
B.22 Bitmap of SCSD8 (magnification --=,n "3,N

low1

Notation

Math Symbols

R The ordered set of real numbers.

0 Tie empty set.

V Means "for all".

E Means "is an element of".

D Means "contains the set".

fl Intersecticn operation on sets.

U Union operation on sets.

e A column vector of ones.

(.)D The dual form of the linear program in the equation (.).

E A binary operator tl,. partitions the rows of a linear program.

D A binary opt ator that partitions the columns of a linear program.

o The invers,7 of tLn' row and column partition operators.

I End of proof.

0 End of example.

ix

Variables and Index Sets

All variables serve both as vectors i multidimensional real space and as -.cts of indices.

The primal variables in.lex tile columns of the matrix A and row vector c , and the
dual variables index the rows of A and the cohmu vector b. The context will make

clear whether a character such as z represents a real value or an index to a column.

Two types of variable are present in the formulation of a decomposition subprob-
lem: original variable* from the original problem and added variables for the purpose
of appending and modifying the original ones.

The primal and dual variables are named with corresponding Roman and Greek
characters. Even the functions of the characters as index sets and variables bear

symmetric interpretations.

Index only

i, k Row indices.

j, I Column indices.

a An index for the objective row.

s An index for the right-hand side.

Dual Variable or Row Index

A An added dual variable on new constraintn.

u An added dual variable on the objective modification constraint.

" Original dual variables.

i, Ai added dual variable on column accounting constraints.

w An added dual variable on the right-hand side modification constraint.

0 An added dual variable on primal convexity constraints.

x

Primal Variable or Column Index

I An added primal variable to combine new columns.

u An added primal variable to implement a right-hand side modification.

* The original primal variables.

y An added primal variable to account passed primal solutions.

w An added primal variable to account the objective modification.

t An added primal variable on dual convexity constraints.

Variable only

a A non-negative scalar.

z An objective value.

Sets

A A closed polyhedral set representing a primal feasible region (in context).

B A closed polyhedral set representing a dual feasible region.

C A set containing column indices.

gN The set containing all communication networks with N nodes.

b A set containing dual extreme poinL;.

f A set containing dual ,.xtreme rays.

1?. A set containing row indices.

A set containing primal extreme points.

•5 A set containing primal extreme rays.

xi

Data Structures

Original Data

A Constraint coefficient matrix.

b Right-hand side vector.

c Vector of costs.

Added Data in Real Space

ft An added data structure to contain extra constraints.

X An added data structure to hold extra columns.

An added data structure for modifying an objective function.

An added data structure for modifying the right-hand side.

An added data structure containing the slope of the dual objective function in
a dual extreme ray direction.

iAn added data structure containing the slope of the primal objective function
in an extreme ray direction.

Added Data in Binary Space

6 A binary scalar indicating a dual extreme point in '.

I A binary scalar indicating a primal extreme point in .

j An binary vector indicating a corresponding dual extreme points in fI.

An binary vector indicating a corrL-0ponding primal extieme point in .

ll Subproblem interface matrix for arc a containing at most one unit entry per
row and column.

xii

Subscripts, Superscripts and Accents

The subscript n (lnotCs information for node it, while the subscript a denotes infor-

mation for arc a. Various math accents are used on b'ith primal and dual variables

throughout. Tit tilde accent, as in :i, indicates a, general solution value. The arrow

accent, as in E, indicates an extreme ray solution value. The dot accent, as in i,

indicates an extreme point solution val'ue.

Ai The ijth clement of the matrix A.

b, The ith element of column vector b.

c' The jth element of row vector c.

nj The ith element of the kth primal solution i, for node n.

:ktn The jth element of kth dual solution -5n for node it.

I.'. The ijth element of the matrix 1.

Dimensions

p The number of processors (in context).

N The number of subproblems.

* The number of times a given subproblem has been solved.

r, The number of coupling rows between the subproblems connected by arc a.

r, The number of non-zero rows in the column partition of subproblem n.

cn The number of columns in the partition for subproblem it.

e, The number of non-zero elements in the column partition of subproblem n.

r, The number of rows in the formulation of subproblem n.

xiii

c, The number of columns in the formulation of subproblem n.

2,, The number of non-zcros in the formulation of subproblem n.

jNl The maximum number of subproblcms handled by the code.

j) The maximum number of processors handled by the code.

T The maximum number of coupling constraints between adjacent subproblems
that can be handled by the code.

Graph Theory

A(The set of nodes in a graph.

n A node in A(.

A The set of arcs in a graph (in context).

a An arc in A.

T. The type for arc a (up, down, left, or right).

g A communication graph (when not subscripted).

h An incidence graph.

p A partition graph (in context).

? The set of all partition graphs (in context).

Problems and Solution Methods

NAMNE/n/p Problem NAME divided into n subproblems and solved using p proces-

sors.

ALG/p Algorithm ALG is run using p processors.

yiv

Multiple Meanings

Tie characters r, C, C, p, A, and P can have multiple meanings. The first three arc

redefined in Chapter Four to refer to row, column and element dimensions of [Ps. In

Chapter Three, p is introduced as a partition graph, while in Chapter Four it refers

to the number of computer processors applied to solving a test problem. Early in

Chapter One, A refers to a primal feasible region, while later it is used as the set of

arcs in a communication network. Finally, in Chapter One, P, when accented with

an arrow or dot, is a set of primal extreme rays or extreme points, but in Chapter

Three, P is used exclusively as the set of all partition graphs in a communication

network.

Chapter 1

Symbolic Decomposition

ESCRIBED herein is a methodology by which Linear Programs (LPs) can

be decomposed into a collection of interdependent
LPs and solved with

decomposition algorithm on a parallel computer. Equation (1.1) introduces

the notation used throughout for linear program formulations:

min cTX = Z"
X>O(1.1)
s.t. 7r: Ax>b.

Corresponding to the constraints Ax > b are dual variables r. The positioning of

the dual variables to the left in (1.1) defines the correspondence between the slacks

of the primal constraints and the dual variables. An analogous correspondence exists

between the slacks of the dual constraints (reduced costs) and the primal variables.

Two important classes of problem will serve as guinea pigs to be dissected. Their

anatomies are displayed in Figure 1.1. The dissection proceeds as a series of bisections

or slices through the rows and columns of A, corresponding to a series of partitions

of its row and column index sets. In the figure, the gray submatrices are where the

nonzero coefficients are located, and the heavy lines with numerals 1, 2, 3, are the

slices and the order in which they are made. Appendix B contains a collection of such

nonzero coefficient patterns for a number of real-world staircase problems.

CHAPTER 1. SYMBOLIC DECOMPOSITION

II

1 2 3 2 3 4

Staircase Two-Stage Stochastic
Linear Program Linear Program

Figure 1.1: Partitioning variables and constraints.

The Staircase LP in Figure 1.1 has its column index set C partitioned into four

sets by three slices. The first one slices off the leftmost block of nonzcros and the

next two in turn slice off the remaining blocks in the same way. In a different manner,

the row indez set of the Two-Stage Stochastic L1P is first partitioned into two sets,

a top and a bottom; then the set associated with the bottom blocks of nonzeros

is partitioned in a fashion similar to that of the Staircase LP. These two classes of

linear program have many practical applications. There is an extensive literature on

exploiting their special structure in order to develop an efficient solution algorithm;

for example: [Dan59], [ZadG2], (DGD64], (VSU,1l, [Gla7l], [11o74], [DGSS].

Tie title of this thesis, The Parallel Decomposition of Linear Progamns, means

that these structures and others can be further exploited if the LP's are solved using

parallel computers. The collection of interdependent LPs (subproblems) resulting

from the decomposition prescribed above can be solved asynchronously on a paral-

Ill computer. Recalling that decomposition algorithms are iterative, we will show

that the corresponding subproblems can be solved repeatedly, with information being

passed from one to another until convergence is reached. Moreover, with a parallel

computer we can solve these subproblems simultaneously with all processors efficiently

employed, thus obtaining the overall solution more quickly.

3

The main contribution of this f.hesis involves developing a "symbolic calculus" for

partitioning linear programs and demonstrating its usefulness on practical 1,P exam.

pies. Finally, we show that a paiallel (ccomposition algorithm can indeed outperform

serial algorithms, by experimenting with a computer code designed to solve staircase

LPs.

Linear Programs Communkcation Networks

fIniti
\TTor-Mori

on Onc No&c

Traigi |a

Altubra I

Nesting

at (COpcrh a 2)

Tr nf-orm

SSubproblems J (CMTAcr2)

Figure 1.2: Symbolic Decompositio.i covered by Chapter One.

Figure 1.2 outlines the derivation of our symbolic decomposition calculus and its

role in producing a system of subproblems. The left side of the diagram represents the

traditional algebraic derivations of subproblem formulations. We propose a transform

to a symbolic space that is based on network theory and we call communication

networks. The symbol gCN represents the collection of all such networks on N nodes.

In place of algebra, we define simple operators on the network that effect horizontal

and vertical slices decomposition in ever more complex schemes. Finally, in Chapter 3

we provide a generalized parallel algorithm based on some given network in gN . This

algorithm is a generalization of nested decomposition f11o74, Abr83] and through

4 CIIAPTER 1. SYMBOLIC DECOIPOSITION

experiments on twenty-two staircase-LP test problems we show that decomposition

algorithms can be sped up by parallel computers.

Given a dissection of the anatomy of a particular LP, like thosc in Figure 1.1,

we can formulate certain well defined subprobiems and a well defined algorithm to

modify and solve thc subproblems, thereby arriving at a solution to the original LP.
We call the entire process syrmbolic dccomposiion because it is concerned not with

actual data values but with the relationships between them (as necessary to solve

the problem). The symbolic calculus we will describe allows for the possibility, if

desired, of refining a dissection to the point where the individual blocks consist of

single coefficients of the matrix A. Using this calculus, we can conveniently partition

the blocks of a large-scale LP to exploit many different underlying patterns found in

real-world problems.

Chapter One reviews the theory of decomposition by Goldman, Dantzig and Wolfe,

and Benders, and introduces symbolic decomposition. It concludes with a theorem

on subproblem interactions.

Decomposition, as described by Ocoifrion, involves either some kind of restriction

or some kind of relaxation of the original problem [Ceo70]. Considerable advantage

can be gained when the restriction or relaxation results in a much simpler problem.

This is especially true when the original problem size is so large it would overwhelm

the computer. The full problem can be broken into many smaller ones that can be

solved to obtain an overall solution. This is decomposition.

All LP decomposition algorithms are based on two well known theorems. The first

is the Goldman Resolution Theorem [Gol56], which states that a convex polyhedron

can be described as a convex combination of its extreme points (provided such exist)

plus a non-negative combination of its extreme rays (when not bounded). The second

is that the solution of a linear program solved by the simplex method [Dan63] (whether

primal or dual) is always at an extreme point (and/or an extreme ray).

'here are two fundamental methods of decomposing a linear program into a collec-

tion of LP subproblems; the Dantzig-Wolfe method [DW61] and the Benders method

1.1. GOLDMAN'S RESOLUTION T77EOREM 5

[Ben62]. They are the duals of each other. Using the former you slice horizontally,

while with the latter you slice vertically.

The horizontal slice of the D-\V method partitions the row indices 7I. into two sets.

\We name them top and bottom. From thcm we generate two DAV subproblens. The

top ret corresponds to the traditional D-W Master problem, a relaxed version of

(1.1) defined on only the constraints so indexed, while the bottom set corresponds

to the DAV Slave problem. Information is passed up and down between them in the

decomposition algorithm.

The dual method, that of Benders, operates via a partition of the column index

set C into two sets: left and right. The left is used to generate the Master and the

right the Slave.

We offer a caution on notation. The symbols for variables, i.e. z and r, are used

in two ways that are context sensitive. In some places these symbols denote the values

of primal and dual variables, but in other places they denote index sets for columns

and/or rows of A, b, and c. Their proper interpretation should always be clear front

their use.

1.1 Goldman's Resolution Theorem

Goldman's Resolution Theorem [GoI56] forms the basis for partially representing

feasible regions of subproblems and generating sets of necessary conditions to describe

them. The conditions are generated from successive solutions of the appropriate

subproblems.

Let the closed polyhedral set A -{x : Ax > b, x > 0}, where A is a matrix of

finite dimensions, and let the sets P5 and ?- consist of all the extreme points and rays,

respectively, of A, the primal feasible region of (1.1).

S

SC!IAPTER I. SY11BOLIC DECOMPOSITION

Theorem 1.1 (Goldman) The set A can be cxpresscd as a convex combination of

its cxtreme points 5 plus a non-n gatiie combination of its extree rays?:

It addition, the number of extreme points ard rays will be finite.

The finiteness of a decomposition algorithm stems from the fact that the number

of extreme points and extreme rays of the polyhedral set (Xi Ax _b z >_ 0) is finite.

1.2 Solution Properties of Linear Programs

li order to enhance our geonctric intuition of decomposition algorithms, we now

describe the forms of information being passed between subproblcms. First, let us

deine the sets b and D as the set of all extreme points and rays, respectively, of the

set 3 = {;- : .4it < c, r >_ 0), the dual feasible region of (1.1). The simplex method

and the following three theorems are due to Dantzig (DanO3].

Theorem 1.2 (Optimal Solution) If an optimal solution to (1.1) exists, the sim-

plex method will generate an optimal primal solution, :i E 15, and a vector of optlial

dual multipliersc, IE b. In addition, c >_ bT r, Vx E A, with equality at i.

Corollary 1.3 (Separating Hyperplane (1)) The hyperplane {x : crx = h-.}

sepatnes the set A from all points x that could give a lower value to c7 , where

dE 5 is a vector of optimal dual multipliers.

Theorem 1.4 (Unbounded Solution) If the solution to (1.1) is unbounded, the

simplex method will give an exheme point, , E ?, and an ext.rerne may, - C z, of

A such that cT@(+ ax) -- -oo as a -- oo. In addition, no feasible vector of dual

multipliers 7r exists, so B is empty.

1.2. SOL UTICW PROPERTIES OF LINEAR PROGRAMS 7

Let A ') and b = ()bc corresponding row partitions. The problem

(1.1) becoms .nin cTX X
Z>0s.t. ,rl : Alz _.b, (1.2)

X2: A2zb 2.
Define the top set .4, = {z : Aiz > b,) and the bottom set A2 = (X : A2X >_

b,x > 0), where the latter includes the non-negativity constraint. Note that their
intersection is the original feasible region: A = A, fl A2.

Theorem 1.5 (Infeasible Solution) If there is no feasible solution for (I.2.), the

simplex method willfind a vector of dual multipliers (t, 2) E *5 that form an extreme

ray of the polyhedron B = {(r, , 2) : AT; + A:T,2 <_ c, (r,,r2) > 0). The ,ay satisfies
it + A <2 0, (it, 0, and bT, +b*2 > 0. If we assume that A2 7 0 thrin

In the following corollary to Theorem 1.5, the dual ray (it i2) is identical to that

in the theorem.

Corollary 1.0 (Separating Hyperplane (2)) If b,7th A, and A2 are non-empty,
the hyperplane {x: X7"A- x -- ,) strictly separates the sets A, and A 2, as does the

hyperplane {x : 2A 2z = %}.

fable 1.1 summarizes the four combinations of primal and dual feasibility, and the
results of the previous three theorems from the classical theory. For each combination,

it lists the forms of the primal and dual solutions, with the primal forms handled
by the simplex method in bold face-feasible optimal, feasible unbounded, and
infeasible. In the primal infeasible cases, the dual ray is obtained at the end of Phase

1. Most algorithms terminate at this point without determining a dual extreme point
when one exists.

Although the simplex method typically stops with only a dual ray when primal
infeasible, it can yet obtain the non-bold face information. When a problem is known

8 CI1APTS1U 1. SYMBOLIC DE-COAIPOSITION

Status Solution Form
Prinal Primal Dual

and Dual Extreme Extreme
Optimal Point Point
Primal Primal

Unbounded Extreme Nonc
and Dual Point
Infeasible & Ray

lPrimal Dual
Infeasible Aone Extreme
and Dual Point

Unbounded & Ray
Primal Primal Dual

and Dual Extreme Extreme
Infeasible Ray Ray

Table 1.1: Solitions of a primal formulation.

to be primal infeasible, it is easy to replace its right-hand side by one that makes

it feasible. It will then finish either optimal or unbounded. If optimal, we have

the "Primal Infeasible, Dual Feasible" case, and the optimal dual solution is the

needed dual extreme point. If unbounded, we have the "Primal Infeasible, Dual

Infeasible" case, and the ray associated with the unbounded solution is the missing

primal extreme ray.

We now introduce the concept of an oracle. The word oracle usually refers to a
magical source of truth. There is not much magic in our case, merely convenience.

For the purpose of argument, the manner in which the oracle obtains information is

not as important as the fact that it does provide it, and in a specific form. Our oracle

will provide solutions to linear programs.

Definition 1.7 (An Oracle) When consulted, an oracle 0(.) offers a "solution" for

linear progrmus. In the case of (J.1), the oracle will generate either:

1. primal -,nd dual optimal extreme points i and - satisfying cTJi = bT*, or

2. a primal extreme ray i satisfying JT < 0, or

1.3. DANTZIG-1WOLFE DECOMPOSITION 9

S. a dual exlre,,,c ray f sa i.fying bT 0.

In cases 2 and 3, we use a weak inequality to cover cases for whic, there is a ray of

optimal solutions.

Lemma 1.8 The Phase I / Phase 2 Simplex Method can perform 0(1.1).

Proof: Compare the three oracle cases with Table 1.1. I

This oracle forms the basis for all of the following algorithmic results.

1.3 Dantzig-Wolfe Decomposition

We will now review Dantzig-\\olfe (D-W) decomposition [DW\1] by partitioning the

row index set of (1.2). We present decomposition algorithms as a combination of two

parts: (a) the subproblem formulations, and (b) the protocol for passing information.

1.3.1 The D-W Subproblems

In a DOW decomposition scheme, let .. E 'P2 U 'P2 be an extreme point or extreme

ray of A2 = {z 42: A 1 _, z > 0). Let §j = I in the case of the former, and let

§, = 0 in the latter. Let all such vectors .q form the columns of a matrix k. Then

by Goldman's Theorem, any point x E A2 can be represented by

S=.X 1>T 0 (1.3)

for some choice of variables 1. The choice of I is not necessarily unique. Substituting

the constraints on z from (1.3) for those corresponding to the region A2 in (1.2), we

obtain the "Master" problem of the D-W decomposition scheme:

min cTxz

s.t. 0: 9T =1

4,: Aix=- (0.4
r~l : A~ >bj.

10 CIIAPTER 1. SYMBOLIC DECONIPL SITION

This system is of course equivalent to solving (1.2). On the surface it would appear

that this transformation was made at the expense of greatly increasing the number

of variables by including 1. Suppose, however, that the oracle is consulteA on a

formulation of (1.4) where the columns of k contain only a subset of the extreme

points and rays of A2. Let us assume that the oracle returns primal and dual extreme

points (i) and (0 , *). We know that i must be in both A2 and Al, and that

6§T+ M 5, 0. If our present collcction of extreme points and rays in S' is sufficiec..

to obtain a solution to (1.2), there can be no x E A2 such that 0 + ,'rx > 0. This

can be determined by solving the "Slave" problem of the D-W decomposition scheme

with(4 6 0)=(1 0), defined ais follows:

min 6t = Z2

r;>O.,w

s.t. t,: 1r,+S _ - (1.5)

w2 : A2X > .

Tile motivation for this problem is to answer the question:

Is there a point z E A 2 sUCh that 0 + Tx > 0?

For a dual feasible solution to (1.5) u will equal 1, meaning that its corresponding

co -straint is binding. In whicl case, to = -Tx - 0 and we are minimizing to over all

x C A2. Therefore, if :, _ 0, there can be nu x E A2 such that 0 + V'TX > 0, and in

answer to the above question: there is no such point. Further, there are no extreme

points or rays of A 2 which if added to our present collcction in k could improve the

overall solution. We have a solution to (1.1).

In (1.5), (t,6,0) is an oracle-provided extreme point or extreme ray of the dual

feasible region of (1.4) for some (?2,'2). If it is a dual extreme point, (,6,0) =

(,1,0), and if it is a dual extreme ray, (g,6,0) = 0).

When 6 equals zero in the extreme ray case, (1.5) will have a vacuous objective

and becomes a fe3sibility problem. We need only find a feasible point to solve it. The

next section ddtails the D-W method of solution, in which we will see that having

1.3. DANTZIG-WOLFE DECOMPOSITION 11

= 0 directs the Slave to find points in A, that could make an infeasible Master

icasible.

Note in the Master that if there arc no extreme points among the columns of X

then 9 = 0 aud (1.A) is infeasible via 0 . I = 1. To ensure thit A contains at least

one cxrcmec point we make z non-nCgatlve in A rather than in A1 .

Equation (1.4) is commonly referred to as the Afastcr problem because its dual

solutions A4 impact the objective of (1.5), the Slave, to select cxtrein' information from

the set A, that will lead to an overall optimum solution of (1.2). In the following

chapters, the Master/S!avc distinction is not suffiCienlt when the dual of this algorithm

is incorporated. For this reason, all such LPs will be referred to as subproblems (being

subordinate to the original problem). and further, (1.4) will be referred to as the top

subproblem, and (1.5) as the bottom subproblem.

1.3.2 The Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the top subproblem (1.4) is solved with 152 and P2

restricted to promising subsets of the extreme points and ertreme rays of A2. Initially

those subsets are empty and we need to build them up to the point where they are

sufficient for determining the solution to the original problem (1.2). On each major

iteration between solving (1.I) and (1.5), one of the sets is exp.'nded: 0 if (1.5) is

optimal, or 'P if (1.5) is unbounded. In (1.4) tie values of x are restricted to be

convex combinations of the points in 2 and non-negative linear combinations of the

rays il 152.

In the spirit of Theorem 1.1, the constraints associated with the dual variables 0

and 0t in (1.4), along with I _> 0, form a partial representation of A2. Consistent with

our earlier definitions, we define this set as

.2 = {:x = ki, TI = 1, 1> 01

and so (1.4) becomes

minimize cTz, x E A l 12.

12 CIIAPTER I. SYMIJOLIC DECOMPOSITION

We pictorially reprcsct the D-V decomposition of (1.2) in Figure 1.3. On the

left is an anatomic rcprcscntation of the row index partition, and on the right is a

2-dimensional geometric representation of the intersection of the two polyhledral sets

A, and A2.

1.r2

Figure 1.3: Partitioning constraints and set intersection.

Ve graphically and geometrically represent the D-\ algorithm with its top and

bottom subproblems (1.4) and (1.5) in Figure 1.4. On the left, the two circles repre-

sent the subproblems, and the arrows, or arcs, represent channels of comnmnuication

for their solution information. This diagram will be referred to as a comn.unicalion

nCtwuork, on which the decomposition algorithm bases its protocol for passing mes-

sages. The arcs in the diagram are of two types: up and down. Up arcs always pass

primal solutions that are collectcd at the destinations and used to form partial rep-

resentations of the primal feasible regions of the sources. A down arc always passes

dual solutions, of which only the most recent is retained at the destination and used

to modify the objective function of that subproblem.

a2

Figure 1.4 Subproblem communication and partial representation of A2.

1.3. DANTZIG-.WOLFE DECOMPOSITION 13

On the right of Figure 1.A are 2-dimcnsional geometric representations of the

fcasiulc regions of (1.4) and (1.5). The two dots in the corners of the region .A2 are

the totality of its extreme points, some of which are passed to (1.4). The region .A2

in the drawing above A 2 is based on any combination of extreme points and rays

passed. One of the rays is drawn twice to show its dependence on the extreme points

passed. The six dots in the intersection of A, and .42 are the possible extreme point

solutions to (1.4), depending on which combination of the extreme points and rays of

A, were used to construct A2.

Given that (1.4) is initially infeasible, the first order of business is to find a point

in A, flA 2 in order to demonstrate the feasibility of (1.2), then to find a feasible point

that minimizes the objective function. The next theorem describes an algorithm that

accomplishes these tasks. The set -A2 = {x I i + c,£, V :i E conv(1 2) and F E f22}

begins empty and is augmented in each cycle between Steps 2 and 3. It in turn

defines the added data § and k in the formulation of (1.4).

Theorem 1.9 (Dantzig-Wolfe Method) This procedure performs 0(1.2):

i. Let 52 = 2 = 0.

2. Consult 0(1.4) and if it returns

e an optimal dual extreme point, let (b:6,O) 4-(, 1,0);

* a primal extreme ray, STOP-0(1.2) is £;

* a dual extreme ray, let (,) -- (0,0,0).

S. Consult 0(1.5) and if it returns

* an optimal primal extreme point, and

i) z2 < 0, let 2' 4- 12U U {i} and go to Step 2;

ii)2 >_ 0, STOP-if6 = 1, 0(1.2) is i from 0(1.4) and (r *T T), else
0(.2) is (-T ir);

* a primal extreme ray, let P2 4-- 2 U {} and go to Step 2;

* a dual extreme ray, STOP-0(1.2) is (0 *2).

Proof: We will work from four cases and then show finiteness.

14 CIAPTER 1. SYMBOLIC DECOMPOSITION

Case 1: If A, = and A2 - 0, 0(1.A) will finish infeasible, implying z =

-I (b - Ajx) > 0 Vx E A2. Then, 0(1.5) will return optimal extreme points with

:2 >0 0(1.2) returns (i i 2).

Case 2: If A, j4 0 and A2 = 0, 0(1.5) will return a dual ray. 0(1.2) returns
(0 4).

Case 3: If A2 - 0 and A, 0 0 and in Step 2, 0(1.4) is a dual ray, then

by Theorem 1.5, the hyperplane {z : 0 + 4x = 0) strictly separates A, and -A2.

According to St,- I and Equation (1.5) we must find a point as far as possible on the

opposite side of this hyperplane from A2 that also lies in A 2. If no such point exists,

:2 = 0 and the original problem (1.2) must be infeasible; 0(1.2) returns (fT ik).

On the other hand, if one does exist, go back to Step 2.

Case 4: If A 2 - 0 and A, 0 and in Step 2, 0(1.4) is a dual point, then by

Theorem 1.2, the hyperplane {x : 0 + # = 0} separates -A2 from all points x E A2

that could give a better value of cT -. According to Step 3 and Equation (1.5) we must

find a point as far as possible on the opposite side of this hyperplane from A2 that

also lies in A2. If no such point exists, the original problem (1.2) must be optimal,

and 0(1.2) returns x, (i*T i'), where x is the present primal optimal solution to

(1.4). On the other hand, if one does exist, go back to Step 2.

Finiteness: Step 3 can never pass the same information twice because any dual

solution from (1.4) satisfies 0 + Ca'x _ 0 for all : E A 2, and the procedure would

stop either optimal or infeasible. The procedure is finite because it is drawing upon a

finite set of extreme-point and extreme-ray data of A2 that can be passed from (1.5)

to (1.4). At any point in the algorithm some subset of this information is in the top

subproblem. Each sud subset must be different because the top's feasible region is

expanded in each cycle. Since the number of subsets is finite and none is repeated,

the algorithm must eventually stop. I

1.3. DANTZIG-WOLFE DECOMPOSITION 15

1.3.3 The D-W Communication Network

The goal of this chaptcr and the next is to charactcrze the space of all decomposition

schemes by deriving the subproblem formulations in increasingly complex steps. At

each step, the system of subproblems will be transformed into an equivalent symbolic

represcntation, and a symbolic operation will be defined to mimic the decomposition

step.

To introduce symbolic decomposition and to develop a formal representation of

D-W decomposition, let us formalize the concept of a communication network. It

is a symbolic representation of a decomposition scheme containing the information

necessary to define all of the subproblems, symbolized by nodes, and their interactions,

symbolized by arcs.

Let gN be the set of all communication networks on N nodes. These networks are

alternative representations of LP decomposition schemes. We will define a transfor-

mation from the space of all decomposition schemes to all communication networks.

It will be shown that this transformation is reversible.

Definition 1.10 (Comnmunication Network) A communication network is afive-

tuple. For example,

g = (A(,7?. 1 CnAj7a) Yn EAra EA,

where the tupics are defined to be

K" set of nodes, r V- 0,

Ri. node n's row index set,

C,, node n's column index set,

A set of arcs, A = {(n 1 , n2) E Ar' : there is an arc from node nj to n2}, and

T" the type for arc a (up, down, left, or right), where if A = 0 there are no E".

The arc types left and right are used in the Benders decomposition method and

explained later. They are included here for completeness of the definition.

16 ICHAPTER 1. SYMBOLIC DECOMPOSITION

The simplest network is one with only one node and no arcs. It symbolizes a
linear program that has not been decomposcd. We offer gi as an example:

gl = ({O),ir, 0) E '.

Tihe node is numbered zero. Tile sets of row and column indices are respectively ,

and x. The set of arcs is empty, and the arc types are not applicable. The network g1

symbolizes everything in the formulation of the problem (1.1) except the actual values

of the data (A, b, c). A communication network, together with the data (A, b, c), is

sufficient information to obtain a solution to (1.1).

Subproblem index sets are used in tile definition of the forward transformation,

which was first depicted in the shaded region of Figure 1.2. An overbar distinguishes

them from the node index sets of communication networks. Typically, 7Z, ' 1Z, and

Definition 1.11 (Subproblei Index Sets) Let the set 7, contain all row indices

of the linear program subproblem associated with node n, and let C. contain all column

indices of the linear program subproblem associated with node n.

Thus in the example above with one node and no arcs, 7 o ,, i.e., all rows, and

Co= x, i.e., all columns.

We now define a communication network based ol the Dantzig-Wolfe (top and

bottom) subproblems. This operation was referred to when explaining Figure 1.2.

We are taking the initial step from linear programs to communication networks.

Definition 1.12 (Forward Transform) The forward transform from a D-IV dc-

composition scheme to the communication network D is a five-step process:

1. Define the set A(having one node for each subproblem.

2. For each node n E A(, define the elements of the row index set R. = R. fl 7?.

3. For each node n E A(, define the elements of the column index set Cn = C, nC.

1.3. DANTZIG-WOLFE DECOMPOSITION 17

4. For each subproblem ni E At containing constraints indcxed by 0 and 4 that

receive information from another subproblem n2 E At, define an arc (112 711) E A

of type T.,., -- p.

5. For each subproblem 1l E At containing constraints indexed by u that receive

information from another subproblem n2 E A(, define an arc (n2 ill) E A of type

T'.nj = down.

With these transformation rules, we can derive the network in Figure 1.A corre-

sponding to the two Dantzig-Wolfe subproblems (1.4) and (1.5).

1. At = {1,2} since there are two subproblems, with I corresponding to the top

and 2 corresponding to the bottom.

2. IZ = 7r and 7Z^ = ri signifying that the rows are partitioned so that those

associated with r go to the top subproblem and those associated with -r2 go

to the bottom subproblem.

3. C1 = C2 = x as the columns were not partitioned (that comes later).

,4. 0 and 4i appear in (1.4) so let A 4- AU {(21)) and T21 = up.

5. v appears in (1.5) so let A 4- A U {(12)1 and T12 = down.

In summary,

9D ({1,2},,37r2,xx, {(12),(21)},down, up) E g2.

In this notation the set of nodes appears first, followed by a list of row index sets,

one for each node, followed by a corresponding list of column index sets. Next is the

set of arcs followed by a list of arc types.

18 CIIAPTER 1. SYMBOLIC DECOMPOSITION

Theorem 1.13 (The Reverse Transform) The reverse transform from gD back

to a D- W decomposition scheme proceeds as follows:

1. For each node n, create a subproblem beginning with the original constraints of

the form
AI.X ? bi, Vi E *P ..

0. Corresponding to the up arc from 2 to 1, include constraints in the lop subprob-

icm of tie form
jTI=i, kl=x, 1>_0

where § and k are information transported by the up arc.

S. Corresponding to the down arc from 2 to 1, include constraints in the bottom

subproblem of the form

Stu> - -X

where (0,6,) is information transported by the down arc. In addition, place

the term +6w in the objective row.

4. Place the term +cTx in the objective row of the top subproblem.

5. Place the non-negativity constraints x > 0 in the bottom subproblem.

Proof: Proof by example (WLOG).

W\Ne use the node index set Io in the following definition.

Definition 1.14 (Dantzig-Wolfe Operator, 8) The Dantzig- Wolfe operator 8

maps gl into g2 using a partition [PI, P2] Of 7?o:

g- [J'1 2P2] _+ g2.

In words this means:

Apply Dant2ig-Wolfe decomposition to the linear program associated with

node n in the communication network. Partition the constraints so that

1.3. DANTZIG-1WOLFE DECOMPOSITION 19

those corresponding to the dual variables in P arc in the top (D-W Mas-

ter) subproblem and those corresponding to tile dual variables in P2 are in

the bottom (D-W Slave) subproblem. The algorithm described in Thco-

rem 1.9 is implicitly associated with the resultant communication network.

This is our most elementary row partition. Begin with the network gl, which has

only one node, and map it into a two-node network corresponding to the left side of

Figurc 1.4. Thus, g, - ({O),, U7r2,X,0) and

9D = 91 E [7'l, W2],

where giD was given above. From gD we can determine which node is the top or

bottom by the arcs that link them. The up arc must be destined for the top node

(subproblem).

The next definition is needed to establish an equivalence between subproblem

schcmes and communication networks. We define the Inverse Operator on only those

collections of nodes that, once collapsed, can be re-split to regain the original net-

work. Later we will rely on this reversibility property of the inverse operator when

characterizing the space of all communication networks, gN.

Definition 1.15 (Inverse Operator, 0) The inverse operator 0 takes a set of

nodes and collapses it back into a single node. It is defined such that

91 = (g, E [P, J)0 {1,2},

for all partitions [PII P2 of 7Zo.

In the expression gL = 9iD 3 {1,2), two nodes are collapsed into one, and the arcs are

discarded.

For networks with more than two nodes, the inverse operator can be thought of

as identifying implicit subproblems, i.e., collections of subproblems that imitate, in

concert, a subproblem that does not exist explicitly. This is explained more carefully

in Chapter Two.

20 CIAPTER 1. SYMBOLIC DECOMPOSITION

The implication of the triple (the transform, the D-W operator, and the inverse

operator) is that wc have created the symbolic space C2 within which we can mimic

the algebraic manipulations of decomposition. By partitioning the index set of a

node in a specific way, we mimic the creation of two subproblcms from a single LP.

Alternatively, the original LP can be regained by combining the index sets of the two

nodes, also in a specific way.

1.4 Benders Decomposition

The purpose of this section is to derive an oracle for LPs that have been sliced

vertically (partitioned by columns) by dualizing the concepts we have discussed for

those sliced horizontally (partitioned by rows). The theorems and definitions of the

previous section will thus return in their dual forms. To characterize C7 and ir"

we first complete the forward transform by including vertical slicing and deriving its

companion oracle. Then we define in sequence: the dual operator, its inverse, and

the dual network.

1.4.1 The Subproblems

Now consider partitioning the LP (1.1) where A = (A3 A4) and c,'= (4), and

91 = ({0},V,:XI U x2, 0). The index sets x, and X2 form a partition of the column

index set x of (1.1) and r is its row index set. With this column partition the LP

problem becomes

min C + C2 = Z
Z,>o (1.6)
s.t. ir :A32: +AIX 2 > b.

The subproblems and the oracle for Benders decomposition [Ben62/ can be derived

directly from D-W decomposition by replacing primal/dual steps by corresponding

dual/primal steps. We want the decomposition-style oracle 0(1.6) that utilizes 0(1.7)

and 0(1.8). A vertical slice through A between x, and X2 partitions its column index

1.4. BENDERS DECOMPOSITION 21

s(t C. To derive the Benders subproblems, we take the dual of (1.6), apply the D-W
operator, and then take the duals once again of the resulting subproblens.

Taking the dual of (1.6) gives

max bTxr ",r>o
s.t. x, : A _< c, (1.6)D

X2 : ATr" _C2,

where we have introduced the notation (.)D to indicate the dual of the LP argument.

Applying D-W decomposition to this problem as was lone for (1.2) gives us the
two 3ubproblen formulations (1.7)D and (1.8)D. We have substituted the variables
(t,y,A,u,w) for (O,,I,v,w), and the data (,fI, ,.,t) for , They

are corresponding Greek and Roman characters. Specifically,

max bTr =Z

s.t. I: jTA =1
y: [A-h-=0 (l'7)

ZR: Ar <cl,

and

max d- z2

s.t. u : gr + jw > -" (.S)D

X2 : AT-4r < C2,

Define B = {r: ATr cl} and B2 = {r: A "w <5 c, > 01. Note that if B is the
feasible region of (1.6)D then B = B1 l B2, and the columns of the matrix II contain
extreme points and extreme rays of B2 -. We define V2 and V 2 to be the respective

subsets of the extreme points and rays of B2 and get fI.j E b 2 U D 2. Since we define

ji to be 1 if ft.j E b 2 and 0 otherwise, ti 7r in (1.7)D must be an element of B if 'b 2

and V2 contain all of the extreme points and extreme rays in B2.

09 1 CIAPTEi. SYMBOLIC DECOMPOSITION

The respective duals of the previous two maximization problems give us the stan-

dard subproblems of Benders cecomposition:

rini cTxi + t =:: ?.O,yit

s.t. r,: A3xz - It = b (1.7)

A: fjTY +itt 01

and mn e4z2 - Lu = :2

s.t. w: =d

7r: A4 2 + 91 ;_.

1.4.2 The Benders Method

To construct a decomposition procedure that performs 0(1.6), we first make the

following definition.

Definition 1.16 (Dual Oracle) The dual of an oracle, syrnboli:cd as 0'(.), inter-

prets the dual solutions of 0(.) as primal solutions, and the primal solutions of 0(.)

as dual solutions.

As defined, the dual of the dual oracle is the original oracle. Ve get the following

property by combining the dual oracle with the dual of a linear l)rogram.

Property 1.17 (Oracle Dual Symmetry) The oracle 0(.) is dual symmetric in

that

o)(.)D = 0(.).

We are reusing our notation (.)D to indicate the dual of the LP argument. To verify

this property, consult Table 1.1 and note that the simplex method can perform O(.)D.

Corollary 1.18 (Benders Method) The following procedure can perform 0(1.6):

1. LetV=V=0.

2. Consult 0(1.7) and when it returns

1.4. BENDERS DE.1OMPOSITION 23

" an optimal primal extreme point, let (U, (1, 1) -- (U, 1,);

* a dual cxtrme ray, STOP-(l.6) is f;

" a pri,,al tzix&,,ne my, let (#,j, 1) - (W, 0,

S. Consult 0(1.8) and when it returns

" an optimal dual extrcnee point and

i) :2 < 0, lt " 2 +- 52 U {*), and go to Step 20;

ii) , >_ 0, STOP-if 6 = 1, 0(.6) is (:[4[) and *, the latter comning

fromn 0(1.7), otherwise 0(1.6) is (: j 4i);
" a dual extrc,e ray, let D2 4- 12 U {i), and go to Step 2;

* a priial extreme ray, STOP-0(1.6) is (0 4).

Proof: Begin with the Dantzig-Wolfe Oracle in Theorem 1.9, and wherever 0(.)

is consulted, replace that consultation by OD(.)D, using the Oracle Dual Symmetry

Property. Next, for each cf the three cases for solutions, interchange the words primal

and dual, and replace the oracle consultations as before, but with 0 (.)D, using the

definition of a dual oracle. Finally, replace the subproblem formulations with their

duals, and replace the oracle consultations as before but with 0(.), using the definition

of (.)D. The oracles 0(1.7) and 0(1.8) for the Benders left and right subproblems

then become the results we require to complete 0(1.6). 3

As a note on the milestones of the procedure above, once having found ir E

BI fl Bn2, we have demonstrated primal boundedness for (1.6). To continue, we must

work toward dual optimality in order to show primal optimality. If we find dual

unboundedness then the primal form (1.6) is infeasible.

We will anatomically and graphically represent the Benders decomposition of (1.6)

as Figure 1.5. On the left, the matrix A is sliced vertically between x, and X2 to

symbolize the partition of the set x into the sets xi and x2. On the right is the

communication network, on which the algorithm bases its protocol for passing infor-

mation and making modifications. The right arc always passes primal solutions, of

2.1 CIAPTER 1. SYMBOLIC DECOMPOSITION

which only the most recent is retained at the destination (node 2) and used to modify

the right-hand side of the subproblem. The left arc always passes dual solutions that

are collected at Ehe destination (node 1) and used to form a partial representation of

the dual feasible region of the source nodc.

x Ix2

Figure 1.5: Partitioning constraints and communication.

1.4.3 Dual Communication Network Theory

The network theory corresponcing to the above subproblems and oracle derivations

is itself replcte with the use of duality concepts. First, the Forward Transform (frcm

subproblems to networks) nce(Is two new rules that are dual to Rules I and 5 and

serve to transform the Benders (left and right) subproblems. Next, we present the

dual to the D-V network, which is generated by the Bcnclers operator.

Definition 1.19 (Forward Transform continued) Theforward1 transform from a

Benders decomposition scheme is a five-step process. The first thre steps are takeln

as those in the prior Forwarl "Thnsform definition, and the last two arc additions to

the prior that complete the definition over Q1 and C2.

6. For each subproblem ni E XT containing variables named y and 1, and for every

other subproblem n2 E Af that provides information for those columns, define

an arc (n2 ,zi) E A of type T,,,,,, = left.

7. For each subproblem n, E A containing variables named it, and for every other

subproblem n2 E M" that provides information for those columns, define an arc

(n2 n1) E A of type T2flI = right.

1.4. BENDERS DECOMPOSITION 25

Theorem 1.20 (Dual Reverse Transform) The reverse transform back to a lica-

ders decom position scheme from 9," proceeds as follows:

1. For each node i, create a subproblcm beginning with the original columnns x of

the forin

A .j , j E G",

2. Corresponding to the left arc f(o i to 1, includc columns t and y in the left

subproblcm of the formti

(and I

where j and ft are information transported by the left arc. The constraints

indexed by A are >_ ones.

3. Corresponding to the right arc from 2 to 1, include columns in the right sub-

problcm of the form

where (I, P,) is information transported by the right arc. It addition, place the

term dw in the right-hand side.

4. Place b in the right-hand side of the left subproblcm.

5. Make the right subproblemn's constraints indexed by 7r into > ones.

Proof: This theorem is derived from the reverse transform in the same manner that

Benders decomposition was derived from D-W decomposition. I

26 CIIAPTER I. SYMBOLIC DECOMl fPOSJTION

Using the forward and reverse transform on the D-W and Benders subproblems

and networks, and the duality of those subproblems, we can obtain a duality theorem

for the networks. The following definition will help with the mechanics.

Definition 1.21 (Transpose Arcs) a) up transpose is type left, b) down transpose

is type right, c) left transpose is type up, d) light transpose is type down.

Property 1.22 (Arc Duality) The transpose of the transpose of an arc type is the

sae type.

At this point we introduce our first duality theorem for communication networks.

Theorem 1.23 (Network Duality) To take the dual of a network g with nodes.N"

and arcs A, interchange the row and column index sets of each node and transpose

all are types. We call the itsult 9'0 and note that the dual of D is 9. The problem

data becomes (-A, -b, -c) so that minimize switches with maximize, and > switches

with <.

Proof: We can work either way through the sequence

G D x o ,, 0 (1 .2) O ,,X 0 (1 .6) Gr ,

which is necessary and sufficient for the short form

D.a

GD gB*

The application of the D-W operator to dual networks as in

nf = YD [
GB =I E3[Xh iX2]

creates a new operator for our symbolic calculus.

Definition 1.24 (Benders Operator, M) The Benders operator maps networks

in G! into those in J2 using a partition [Pl, P2] of Co, a subproblem index set for

node n.

1.5. SUBPROBLEM INTERFACES 27

In words this means:

Apply Benders decomposition to the linear program corresponding to the

node to be split in the communication nctwork. Partition the variables

so that x, is in the left (Benders Master) subproblcn and X2 is in the

right (Bcndcrs Slave) subproblem. The governing algorithm described in

Corollary 1.18 is implicitly associated with the resultant communication

network.

This case also begins with one node and no arcs, g1 = ({O), r, xi U x2 , 0), and

9B = 911 mX Izz X2],

where 98 = ({1, 2),'r,%,r x1 , X21{(12), (21)), right, left).

Property 1.25 (Benders Inverse Operator) The inuerse operator 0 is applica-

ble to the Bendcrs operator as well as the D- IV operator:

91 = 9 1[P,,P2] 0 (1,2),

for all partitions (h P2] of Co.

Proof: Since we know that g9 = (g, a [P,,P 2]) 0 {1,2) already, by using net-

work duality, it must also hold that 9, = g = (9D E3 [P,P 2]) 0 {1,2). In ad-

dition, since both go = P 1 [ix2] and 9B = 91 m [x1, X21, we now have g, =

(g, D [xIx 2])D 0 f1,2). But inversion is not concerned with indices or arc types, so

finally, g, = (91 MwXhx 2J) 0 (1,2). [

1.5 Subproblem Interfaces

The positions of nonzeros in, and the partitioning of, the, .istraint matrix affects

the quantity of information communicated between subproblems. Vacuous columns

in a row partition let the corresponding variables be free of constraints. When this

28 CIAPTER). SYMBOLIC DECOMPOSITION

occurs, there is no need to pass information indicating that a variable is free. It is

instead possible to make this fact implicit in the formulation of the other subprobkem.

The subproblem interface theorem characterizes the portions of subprobicm so-

lutions that are exchanged. It is based on the following LP formulation, which uses

a partitioning of the columns of (1.2) so that A1 = (A t A i12), A2 = (A'i A22),

and cJ= (T, 4). Thus, the LP of interest is

min CTX + 4 2 -X1 >0

s.t. r1 : A,,x, + A12X2 > b, (1.9)

I :A 21X, + A22Z2 6 2,

with accompanying starting network g1 defined as follows:

91 = ({Qo),, u 2 , uX1 ,0).

Theorem 1.26 (Subproblem Interfaces) Let us assum1e Ihat (1.9) is dccom posed

by the D-IV method using the row partition [7 1,,r21. If A, 2 = 0, the dual solutiotl to

o in the top subproblem is a constant equal to -c. The subpt-oblems arm formulaird

as (1.10)' and (1.11)' below. Similarly, if A22 = 0, the primal feasible region for X22

is the positiuc orthant in the bottom subptoblcm and can be expresscd instead using

subproblems formulated as (1.10)" and (1.11)".

Proof: With D-W decomposition of (1.9) using the partition ' we get the

subproblem formulations:

min cTXI + cTx12 = -'1>0o
n-ih12

s.t. 0: §T! =1

, 21 1 - IXII = 0 (1.10)

02 : X2 21 - Ix, 2 = 0

"r1 : A,1x,, + A, 2X. >_ b,,
and

min w =z 2.
X21 >0

T22 0, I
s.t. v: P,x2, + i 2X22 + -w>-O (1.11)

-2 : A21 2, + A22X22 > b2.

1.5. SUBPROBLEM INTERFACES 29

Case 1: If A1 2 = 0 the solution for 42 always equals -c 2 by the dual constraints.

Substituting X221 for X12 in the objective row of (1.10) and fixing 2 = -C2 in (1.11),

we gct

min cZT,221 + cTzII =--I

s.t. 0: T=

01 : -,2 - IzI = 0
7N, : All.Ti > bi,

and

min cTX22 + 6tw = Z2.X21 >0

s.t. v: 'I X21 +6w> -o (1.11)'

2 :A2 1z 21 + A22X22 > &i.

Case 2: If 122 = 0 the feasible region for x22 is the positive orthant. Therefore,

by moving the non-negativity constraints for these columns to the top subproblem

and eliminating those columns from the bottom, we get

min cTXzm + cX=12 =z1>0

X11I,12>0

s.t. 0 = 1 (1.o)"

#i : X2l1 - IX = 0

7rl : A,,xi, + A12XI2 _ b,,

and

min + w =z 2.
X21 >O.W

s.t. V : tIX21 + 3w > -O (1.11)"
7r2 : A21X21 b2.

In summary,

If A1 2 = 0 then (1.10)(1.11) (1.10)'(1.11)', and

if A2 2 - 0 then (1.10)(1.11) (1.10)"(1.11)".

. _ _ _ _ = + £ +. =+ + = + + -.. -=+... -,- '+ L - +

30 CIIAPTER 1. SYMBOLIC DECOMPOSITION

We have also proved that tle communication graph is not affected by alternative

subproblem formulations, lence alternative subproblem interfaces: g9 8 [r-i, 1, 2] = 92

where

92 = ({1,2), -hr2,,, Ur 2,,1 , Ux 2, {(12),(21)},down, up).

The dual of the Subproblem Interface Theorem yields the following corollary. The

subproblem formulations are left as an exercise.

Corollary 1.27 (Subproblem Interfaces) Let us assime that (1.9) is (lccomposed

by the Benders method using the column partition [x,x2j. If A. = 0, the pl'ini!

solution to Y2 in .he left subproblem is a constant cqUal to -b.. SiMilarly, if A1 2 = 0,

the dual feasible re.ion for r-2 in the right subloblem is the positive ortha.I.

In the sequel, unuccessary variables and constraints will be dropped when subma-

trices are ecqual to zero.

1.6 Summary

\Ve have reviewed the theory of Dantzig-WVolfe and Benders decomposition, and found

their subproblem formulations and their algorithms to be duals of each other. Il the

process, we introduced the symbolic space of communication networks with One and

two nodes, Ci and g2 respectively. The algebraic decomposition of LP subproblems ,

is equated to the splitting of node index sets in communication networks. Tile set C/

contains one network which is self dual, and the set g2 contains two networks which

are duals of each other. In the next chapter we will explore the span of decomposition

schemes possible under our defined operators. It is 0A' . Since higher dimensional

schemes are constructed upon lower dimensional ones, and since the two entries of C2

are duals, this automatically divides all of gN¢ in half. Every scheme in one half has

a dual scheme in the other; except for G', which lies in both (or neither).

W\e have shown that the duality of linear programming translates directly to a

duality for networks. The next chapter characterizes the space of all subproblem

1.6. SUMMARY 31

formulations and likewise their accompanying communication networks. Once char-

actcrizcd, wc can give the transforms and the duality of all nctworks.

Finally, the pattern of zeros and nonzcros in the constraint matrix affects the

intcrfacecs between subproblems, and cven their formulations. By investigating these

patterns, we can drastically reduce the quantity of information communicated over

the network for sparse problems.

Chapter 2

Characterizing Communication

Networks

E FFICIENT use of a parallel computer requires that there be many subprob-

lems that can be solved independently. Having completed the dcrivations

of the top, bottom, left and right subproblems, and the communication dia-

grams describing their interactions, we now embark on an exploration of the versatility

of the D-W and Bendcrs partitioning operators and their use in creating many sub-

problems for a parallel computer to solve. The following sections describe a variety

of decomposition schemes that can be generated with partially ordered sets of parti-

tions within partitions. Each scheme alone is capable of performing the oracle on the

original problem, O(1.1).

This chapter concentrates solely on partitions, subproblems, and networks; a skele-

tal framework and on which to attach the muscles, the algorithms. The next chapter

covers the parallel decomposition oracle, which is a relaxed form of nesting oracles.

Naturally, we get a serial oracle from the parallel one when using only one processor.

For now we take faith in nesting the oracle and proceed.

32

2.1. NESTED DECOMPOSITION 33

Linear Programs Communication Networks

ncarTrson

'(:h.'-t:r +-) A / o -,xi0ors
.......... . . . onl . Onc od<:c

~(ClarA) 4
T4l,arj I.-.

4I~raI

Figure 2_.1: Symbolic Decomplosition covered lby Chapter Two.

2.1 Nest;ed Decomposition

In the previous chapter we described decomposition in ters of operations oi co-

munication networks that form new, highcr-ordered networks. The term ncstcd, in

the title of this section, refers to the practice of embedding one thing within another.

Using our operators, we can nest pa, titions and oracles with a sequence of slices. For

the present, we will nest only D-V decomposition and state simply that the dual of

each operation we perform applies equally well in the context of Benders decompo-

sition. As an extension to traditional decomposition, we introduce cross-nesting, the

practice of using both D-V and Benders decomposition on the same problem.

We consider three variations of nesting the D-V and Benders operators in the

network OD, which together with their dual versions compl)rise the complete set of

communication networks on three nodes: g3. 'The three variations are: splitting the

top with 2 and splitting the bottom with S and m. We demonstrate the algebraic

derivations of the subproblems and note that we can successfully use the defined

operators to chronicle the mapping of 9D into Ga. As a summary, we present the

34 CIIAPTER 2. Ch!ARACTERIZING COMM UNICATION NETWORKS

general forward transformation, and apply our decomposition operators to networks

in gNY
Early rcerences on nested decomposition are [Dan73J, [Gla73], and ([o7,iJ. Later,

Abrahamson [AbrS3] and \Vittrock (WitS3] enhanced the dual version or Ncstcd-

Benders Decomposition. Here, we take a very generic view of nesting, considering

more fashions of subproblems.

Before starting, let us redefine (1.1) with A = | A2 and b =o that we

A3 0
now wish to find an oracle for solving

nin cTz z
xO>o!J . 7t : Alz _b, ('2.1)

7r-I : Aaz > b2

7r3j: A3 : b3,
with its corresponding nctwork having one node and no arcs,

91 = ({O),,, U -2 U7r3, X, 0).

The last chapter covered the two cases of applying 8 and m to g, to generate

G9D and 9 In turn we will new apply the same operators to gD and GB. Tile main
difference between splitting the node in g, and one in either PD or 9B is that the two

latter types have incident arcs. What do we do with these incident arcs? In the next

two lemmas, we adopt the convention that:

When a node in GD is split using 8, those arcs once incident to the split

node will be made incident to the ncw top node.

This convention makes communication networks have tree structures. Splitting a

bottom node extends a branch of the network, while splitting the top node starts a

new brand.

Lemma 2.1 (E on the Bottom Node) The D-IW operator can be applied to the

bottom node using the ezpression

Y3 t !1-[L7ri, [7r22ir3J],

2.1. NESTED DECOMPOSMION 35

1Lhere

93 = ({1,3,,Q,',W 2,7r3,L,,,, {(13),(34),(31),(43)),down, down, up, up).

'Proof: Let Ir:, [r2,193jJ be a partition of the original row index set . Decompose

the LP formulated in (2.1) into three ,ubproblems using two applications of tile D-W

operator. The resulting subproblcms will exhibit a linear communication structure

as in Figure 2.2. The dotted supernode 2 represe-its an implicit subproblemn that has

itself been decomposed into nodes 3 and 4

23

4

Figure 2.2: Spitting the bottom node.

The first application of the operator groups the bottom two indices together in

the second partition:

g, E3[ri,r 2 UW3] = 92,

where the resulting subproblems are
min cTz I = zi

11>0

s.t. 01: . t = 1 (2.2)
01l : Xkll - Ix, = O

7rj : Aix, bi)

and
min 61w2 Z2

Z2 >.O, U12

s.t. V2 : TX2+ 1 2 -0 (2.3)

7r2 : A2X2 b2

r3: A3z 2 431

36 CIHAPTER 2. CIIARACTERIZING COMMUNICATION NETWORKS

and 92 = ((1,2),?,,W2 U T3 ,x,X, ((12),(21)J,down, up). The second application of

the D-\V operator uscs the partition [r21x3l to slice horizontally through (2.3). The

resulting subproblcm formulations are

s.t. V2: ,T+X 2 ,, >_. -i,
0: ,;= 1 (2.4)

02 : Ak,3 12 -1X 2 =0

and
tin 3wU3 = :-3

s.t. V3 : '2 +,3x,, _ -O (2.,)

ir3 : Ax3 >_ 6,

with thC V2 constraints included in the top partition.

The final network that corresponds to the subproblem triple (2.2)(2.4)(2.5) is g3

and can be compared to that pictured in Figure 2.2. I

By reordering the nesting we just used, we induce a different communication

pattern from the one above. When we split the top node with E, we spawn a new

branch in the network.

Lemma 2.2 (S on the '.'op Node) The D-lY operator car be applied to thc lop

node using the expression

gi E [{rz, Ir2], 93,

where

93 = ({3,4, 11, 71,7r2, r3,x,x,x, {(34), (32),(43),(23)},down, down. up, up).

2.1. NESTED DECOMPOSITION 37

Proof: Apply the partition [{r 11w2),xrj to (2.1) to get the system of subproblems

(2.6)(2.7)(2.5), where
min c'x 1 = Z
11 >0
1;50

02: 92 = 1 (2.6)
V), : k'21 t 1xI 0

2 : k 312 - I 1= 0

7rj Aix, bi
and

S.. V2 : 4T 2 + 3,w, _ -0, (2.7)

7r2: A2 > z,
with the accompanying communication network 9, as shown in Figure 2.3. 1

3

2

Figure 2.3: Splitting the top node.

The term cross splitting will be used to describe the process of nesting Benders

decomposition within D-W decomposition, and vice versa. We use the following

definition to identify such a condition.

Definition 2.3 (Cross Splitting) A node is cross split when the E operator is

applied and it has an incoming right arc, and similarly, when the [a operator is

applied and it has an incoming down arc.

We will not cross split added constraints and variables that function as partial

representations of the feasible regions of still othcr subproblems (incoming up and

38 CIA PTEIR 2. CIA RACTERIZING COMMUNICATION NETIVORKS

left arcs). This possibility would take us beyond the scope of this thesis. l!owevcr,

the extra subproblem data that implement objective or right-hand side modifications

are considered valid places for cross splitting. For instance, it is valid to partition the

columns of the D-W bottom subproblem (1.5) but not thc top one (1.4). Figure 2A

illustrates the communication network that results from cross splitting the bottom

node in 9D.

Figure 2A: Cross splitting tihe bottom node.

First, we repeat the LP fomulation used for the Subproblem Interface Theorem:

min C'IX + CI'2= :
z>O

s.t. 7rl : Alx 1 + A2X2 > , (2.S)

72 : A21X1 + A22X2 > b2,
and its accompanying network is

91 = ((O)r, U7 2,XI UX2, 0).

Figure 2.4 completes the depiction of all networks in g3 that can be generated

from 9D. The changes made to 9D to get this network do not follow our previous

convention of making arcs once incident to the split node incident now to the new

left node. Because we have cross split, the arcs in question must be duplicated and

made incident to both new nodes. This is evident from the subproblen formulations

and an application of the forward transform.

Lemma 2.4 (M on the Bottom Node) The Benders operator M3 can be applied

to the bottom node using the expression

(91 E 8[7, r2J) ED XI iX21J 93,

2.1. NESTED DECOMPOSITION 39

Wh cr

.93 = ({1,3,4, 1 ,,2,'X2wx, U X2 ,Xh,,2,

((13), (1l), (31), ('1 1), (23), (32)), down, down, up, up, right, left).

Proof: First we create modified versions of the top and bottom subproblems on

which to demonstrate. To do this, apply D-W decomposition to (2.8) as the following

expression suggests'

g2 = g, E[r,,3I2,

where 02 = ((1,2),7 , w2 ,x, UX2,X: U: 2, ((12), (21)),down, up). The top and bottom

subproblem formulations are:

min cTXII + T-z12 = :o1>0
xi,r3
s.t. 0: 92 =1

1 , Xk2 -X 1, = 0 (2.9)

2 : 221 - IX 12 = 0,

7Il : Al 1:3 + A12XI 2 > bl,

and

min 6wI + 6w2 = -2

Z2)>OX22>O
s.t. V,: X21 + Sw1 > -0 (2.10)

V2 : 4~X22 +SWt 2 > 0
7r2 : A2,X 21 + A22X2 2 > b2.

Note that some liberty was taken in the formulation of (2.10) by implementing the

objective modification with two added variables and constraints instead of one of

each.

,0 CHAPTER 2. ClIARACTERIZING COMMUNICATION NET WORKS

Continue by crmssing Benders decomposition on (2.10) with the partition [X2 , z221.

The left and right subproblcms are

min &o, + t = X21

Y2
s.t. V, :i 21 +6W, > - 0 (2.11)

7r2- : A21X21 ly = b2

A, : IIy + 22t 0,

and
rinI -1 22 3102 = Z22,

s.t. U22 : 02X22 + SW2 >0 (2.12)
r22 : gU22 + A 22X22 > 0

W22 : ju 2 2 = j,

where w, has followed X21, and w2 has followed X22. I

To summarize this cross splitting example, we began with the linear program (2.8),

applied Dantzig-Wolfe decomposition to obtain the subproblem system (2.9)(2.10),

then applied Benders to the bottom subproblem. This was made possible by express-

ing the added structure for objective modification with multiple constraints, instead

of a single one. The final communication network is 93 and is shown in Figure 2.4.

The final subproblem system is (2.9)(2.11)(2.12).

The following corollary formally notes that the other networks in ! 3 are duals of

the three above.

Corollary 2.5 (Nested Duality) Theorems 2.2, 2.1 and 2.4 apply also to splitting

the nodes of gB with the words top and bottom replaced by left and right, and switching

E9 with [and row partitions with column partitions.

Proof: This statement follows from the network duality theorem.

In conclusion, the operations on gD and gB have demonstreted how to split top,

bottom, left and right nodes. The distinguishing feature of these nodes was that

they had incident arcs from either above or below, but not both. We look forward to

having our operators applied to any node in a network.

2.2. CIJARACTERIZING 9 11

2.2 Characterizing g3

As we have stated carlicr, the previous three operations on the network gD arc defined

to bC the only valid oncs. Tablc 2.1 cnumcrates the six mappings from 92 to g3 , and

*'igurc 2.5 has them drawn out.

The following are the descriptions for column headings in Table 2.1. The table

represents the results of a boolean function on the column headings. Ead heading

can take one of two values.

First Split Uses: Either the 83 or the D operator is applied to g, to get cither 9D

or 9n.

Second Split Uses: The operator used for the second slice.

Second Splits Node: The node split on the second slice. We use number 1 to

indicate the top or left nodc and the number 2 to indicate the bottom or right

node.

First Second Second
Split Split Splits
Uses Uses Node

1 E E3 1 Valid
2 8 8 2 Valid

a E 1 Invalid
3 E3 D 2 Valid

9 83 1 Invalid
4 D E3 2 Valid
5 w In 1 Valid
6 1 [] 2 Valid

'rable 2.1: The Elements of g3 .

12 CIIAPTER 2. CIIARACTERIZINO COMMUNICATION NET WORKS

23 4 5

Figure 2.5: The elements of g3.

2.3 Characterizing gN

By characterizing all decomposition schemes that are attainable with our defined set

of operators, we will be able to state a parallel decomposition oracle that holds over

the entire space. First we need to handle one more case for splitting nodes, then we

can show that our operators are well defined for any node by demonstrating their

validity on the most general case. We need to define a "middle" node and how to

split it.

Definition 2.6 (Middle Node) A node n E X is a middle node if it has incoming

and outgoing up or left arcs.

Our convention on incident arcs remaining incident to the new top node means that

splitting a middle node adds a new branch to the network.

Lemma 2.7 (E3 on a Middle Node) The D- Woperator can be applied to a middle

node with no incoming left arcs.

t

2.3. CIJARACTERIZING gN 43

Proof: \V start by redefining the LP (2.4) by the partition A2 = (A22) and\ A22

b2 -(b to arrive at

rai 61w., = z

12>0

s.t. U2: b7x2+30)2 > -l

02: 9 t2 1 (2.13)

02 : A9312 -1T 2 = 0

V21 : A21X2 > &21

V22 : A22X2 > b22.

Next, the expression

g91 7r1 , (7r2 , 7r22JJ, -X31

suggests that 0(2.13) can in turn be performed by the D-W Method using 0(2.14)

and 0(2.15), wherc

mil 31W2 =Z2
12>0X2 i UP2

s.t. v2 : aTIX 2 + S11w2 > O1

02: ;r2, =1

02 : k3 121 - IX2 = 0 (2.141)

022 : 9'2122 = 1

22 : -k22122 - IX2 =0

7r21 : A21 X2 >b 2

mill
3 2 2 W22 = Z22

X22, W22

S-t. V22 : A 2 X22 + 322W22 4220~ (2.15)
r22 : A22x2 > b22.

The forward transform gives us the communication network in Figure 2.6.

441 CIIAPTER 2. CIARACTERIZING COMMUNICATION NETWORKS

Figure 2.6: Splitting a middle node.

In conclusion, our networks get longer from the bottom and bushier from the top and

the middle.

By proving a partial ordering property, we can use terms like upper, above, lower,

and below as relations between nodes. The > symbol is used to indicate an ordering

between two nodes.

Property 2.8 (Partial Node Ordering) There is a partial ordering on the nodes

of networks in 9N, following the rule that nj > n2 if there is an up arc from n2 to

n,. Node nj is said to be above n2.

Proof: Theie is a directed graph of up and left arcs that spans the nodes of g E 9N

and it has no directed circuits. Hence, it induces a partial order on up arcs. I

We now summarize the forward transform from Chapter 1 as a seven-step process.

The first step defines a node for each subproblem, and the other steps define the other

four tuples in a communication network according the subproblem indices: 1z,, and

Theorem I j (Generalized Transform) The transform from a system of N sub-

problems to a communication network with N nodes is a seven step process:

1. For each subproblem, define a node in the set A.

2. For each node n E AC, define the elements of the row index set 7z = 7.. l 1?.

3. For each node n EAt, define the elements of the column index set C = Cn nC.

2.3. CHARACTERIZING gN 45

4. For each subproblem ill E N containing constraints indexed by 0 and b, and for

every other subproblem n2 E A, that provides information for those constraints,

define an arc (12 Ili) E A of type T,,= up.

5. For each subproblem 7n1 E A containing constraints indexed by v, and for every

other subproblem n1 E A that provides information for those constraints, define

an arc (112 Il) E A of type T,,,,, = down.

6. For each subproblem i, E A containing variables named y and i, and for every

other subproblem 12 E A that provides information for those columns, define

an arc (112 711) E A of type 7T",,, = left.

7. For each subproblem Ili E A containing variables named u, and for every other

subproblem 112 E A that provides information for those columns, define an arc

(n2 ni) E A of type ,,,,, = right.

Proof: First, the theorem holds for sclemes involving only D-W decomposition,

since we know that the transform is correct for a top, bottom, or middle node, as

already demonstrated. Second, by network duality, the theorem holds for schemes

involving only Benders decomposition. Finally, when both types of decomposition are

represented in the same network, we can transform a node with adjacent horizontal

and vertical arcs because the arcs have independent effects on the formulation. The

added(variables and constraints of a subproblem interact only through their incidence

to the original primal and dual variables, x and 7r. I

Definition 2.10 (Inverse Operator on G'N) The inverse operation on gN is de-

filled as one being reversible by a series of applications of the D-W and/or Benders

opcrators.
gN 0 A' -, gN-IJA'I+l

where A'i < N. For the specific networks 92 E 9N and 9 E gN-IA(l+1, to take an

inverse using any A' 9 A 2, collapse all the nodes into one, and redefine all of the

incident arcs as follows:

46 CIIAPTER 2. CIJARACTERIZING COMMUNICATION NET WOIPKS

I. At, , - +" + }, n iAt 1,
.2. 17", =U., CV. . I,,
2. . U., = UC 1g C,,

4. A,1 -- A2 - U., ,.{(i, n2)) -U. 2 .. {(. ,7 12))

+ U(. ."2)A2 ((1 112)) + U(n 2).I., {(n, n)),

5. T.,. = 7.,., V (n, 1) , and (ni , 2) E A 2,

where we have used + and - to mean set union and subtraction. Note that we will

not allow sets to contain duplicate elements.

The inverse operation is defined in terms of being reversible. We now give two

conditions on the set of nodes to collapse A(*, that offer this feature. First, define the

following terms:

up connected nodes: 7.or some graph 9 E g9', the nodes in the subset Aft E At are

said to be up connected if and only if for all 11, 712 in At there exists an 71,t2

undirected path on up arcs that visits only nodes in A.

left connected nodes: The dual of a network on up connected nodes.

Lemma 2.11 (0 for Connected Nodes) If for some network g E GN, the nodes

in At* E N arc either up or left connected, then the effects of the inverse operation

9 1= g Co gV

can be reversed by a series of D- TY or Benders opcrations, respecively.

Proof: By induction on the number of nodes in A.

1. Show it for IpA'i = 2. Take from a network g E gN two nodes ni and 12 whiCl

are up connected. We have shown in Chapter One the inverse operation used on

tie networks in g2. This step is reversible because when splitting tile aggregate

node, incident arcs can be replaced to their original positions by choosing tile

proper partition.

2.3. CIIARACTERIZING gN '17

2. Assume that the operator holds for IJN" = N - 1.

3. Show it for PV'I = N. Take a set of up comiccicd nodes X* where IA"i = N.

We have showni that any two up connected nodes in ,V* can be joined into

one, thus reducing the order of the network by one node. By the induction

assumption, the operator then holds for any N.

I

Lemma 2.12 (0 for Unconnected Nodes) For some netwoi* g E gNv and some

,ubset A" - {=1, 112) C M, it1 and 112 are both up connected to n:, then the effects of

the i, Vcise opcitio
g' g r0 A(*"

ar rvcrsiblc by a series of splitting operations.

Proof: We use a bidirectional sequence of inverse and splitting operations on net-

works in g to g3 to show that the necessary node configurations can be achieved.

For larger networks, any arcs not incident to these three nodes are left unaffected,

by design. Mncident, arcs are either between the three nodes, in which case they arc

covered by tie operators on 9', or they pass outside the three nodes, in which case

their sources and destinations within the three nodes can be set by doosing the split-

ting partitions properly. Transforms from one network to another and back again are

shown in Figure 2.7 and explained below.

0 : Collapse node 2 into node 1.

0 : Collapse node 3 into node 12.

8: Split node 123 with a partition of the rows.

I

48 CHAPTER 2. CIIARACTERIZING COMMUNICATION NETWORIS

12 1

0 0 9
Figure 2.7: Proof of moving up arcs.

NdD PiS

IS D

Figure 2.8: The generic node.

Definition 2.13 (Generic Node) As pictured in Figure 2.8, the generic node has

incident arcs such that:

1. incoming Up arcs have Sources in Nus,

2. incoming Down arcs have Sources in ACDS, and

3. incoming Right arcs have Sources in .Ans,

4. outgoing Up arcs are Destined for ArUD.

5. outgoing Down arcs are Destined for nodes in A'DD,

6. outgoing Left arcs are Destined for nodes in LD,

and no others.

Lemma 2.14 (Generic Node of 91N) Each node and its incident arcs of a network

in gN can be described within the structure of the generic node or its dual.

9.3. CHARACTERIZING 91 '19

Proof: By induction on the number of nodes.

I. The leInmma hoIls casily for networks in *l and g 2.

2. Assumc that the lcmnia holds for all nodes of networks in gN .

3. By the definitions of the B and M operators, no node may be cross split if it has

an incoming 1il) or left arc. Only the M operation may be used on the generic

node. Thercfore, only left and right arcs may be added when splitting it, which

takes the network from gN to gN+1 . The dual holds for the dual of the generic

n1ode.

Lemma 2.15 (gN 0 jV* -4 . 4) Pick a node n in a network gN E gV . Using lhc 3

ol; cr,~o,; this nctwork can be reducel to the four-node network in Figurc 2.9, its dual,

or some special case of cilhcr

Proof: It is sufficient to prove that the connected node sets of the generic node can

be reduced to the threc nodes so that

a) AL4D JVDS, A(,LD = AtRs, ,Vus ADD.

b)) t VIL, JVLD 5 AUS, Arus U MD, and

c) AUD = {,IUD}, K1,D = {11D), ArUs = {Ius), and

Vc know a) holds since all communication networks arc symmetric; for every arc

(711 2) there is a corresponding arc (712 nl). We know b) holds because the nodes are

l)artially ordered. We know L) holds because:

* any nodes on left arcs will collapse to either one node in an up tree, or the two

nodes: itlD and 71, and

* there is only one tree on up arcs containing n implying that NUD and Aus can

be collapsed to one node each.
i

50 CIIAPTER 2. CIIARA OTERIZING COMM UNICATION NETWOIIKS

We now define the gencralized Dantzig-Wolfc operator on the generic node.

Definition 2.16 (8 on the Generic Node) To apply the 8 operation to a generic

node n E AJN, front a network N GN by, N+i =ON E[PIP 21, we define the

transition of each tuple in gN to that ingl+l .

1. Node i is discarded and two new nodes are added: .(N+, = . ,,- {,) + {1, 112),

whcrc t1),12 g XN.

2. All arcs incident to node n arc discarded. Of those, the vertical ones arc linked

to nodes n, and the horizontal ones arc duplicated and incident to both nodes

t, fland 12:

AtN+i = AN- U {(',,),(I,1,'))

+ U {(n'n)),+ U {(ni,1')}, ify,t E P1"11.vUS .'EN'rJD

+ U {(,L'11)},
WCerus

+ U ())',,,)}, if u E Pi
,EArs

+ U {(I,'n,),(.',,)1
n'EAV.S+ U {() (n'))

"'EA'uo+ U {(n,,i'),(1,,.'))

n'E+IIO

+ {(III 1,2),(n 2 nj)).

3. The row index sets for nodes II and n2 arc the same as for node ,: -

7 2 = .,, and the column sets for new nodes are determined froom the column,

partition: Cn, = P and C 2 = P2.

4. The arc types of the repositioncd and duplicated arcs stay the same, and the two

new arcs (111 12) and (n2 ri), become down and up ones respectively:

T.,,= up,Vn" EAJus,(n"n,) E AN+,,

2.3. CIHARACTERIZING 9gv 51

T118,, = down, Vn' E AtDs,(n" 1) E ANv+1,

T",,,, = right, V11" E .'ns,(,i'n 1) 6 A+,.

11,10 = up, Viz" 6rUD,(TII LH) E AN+,

,. i = down,Vt' E A DD,(Izn") 6 Av+l,

Tn ,o = left, Vn1" E ArLD, (,1 ,7") E At+1,

T"1,.2 = down, and

.2", = up.

'The main theorein of this thesis involves a generalized E3 operaton on nodes of

networks in N . We first prove the operation on a close cousin of the generic node,

using node 3 in Figure 2.9.

Lemma 2.17 (E on C4) The E3 operator as applied to the middle node in Figure 2.9

is a special case of the generalized 8 operator on the generic node.

2

1 3

Figure 2.9: The 4-node generic network.

Proof: Proof by comparison. Take the case where the subsets of connected iiuj, each

have one element, and JVUD = AfDS = {2}, ALD = KRS = {1}, ALS = NRD = {3).

We will call this network g4. It has the following specification:

-= (r-,2,3,4,},

' ', r 1, w2 U 7r 1",7 4 . 1 ,x 2 , x2, x2,

52 CIAPTER 2. CHAIACTERIZING COMMUNICATION NETWORKS

{(12), (21), (13), (31), (14), (11), (23), (32), (34), (43)),

T12 = 3 = T4 = right, T2 = T1 = T = left,

T1 =T4 = down, '42 = T43 = up).

where ;r =rI UW2 Uw TUx4. The operation on this network is 9s = g 4 DIX2,r3j, where

. = ((1,2.,,6,4,),

7v, --I i -2t 7r3, 7r4 1, 2, :C2, X2, X=2,

{(12), (2.1), (15), (51), (16), (61), (14), (41), (25), (52), (56), (65), (54), (4,5))},

T= T5 = TI = T= right, 72, = Ts, = 76, = T = left,

i= s= = T 4 = down, Ts2 = 7s = T4s = up),

We enumerate the steps used to convert 94 into gs:

1. One node is discarded and two are added: A(2= , - {3) + {5,6).

2. All arcs incident to node 3 are discarded. Of those, the horizontal ones are

linked to nodes 5 and 6 according to the column partition, and the vertical ones

are duplicated and incident to both nodes 5 and 6: A2 = A, - {(13), (31), (23),

(32),(34),(43)) + {(1),(51),(16),(61),(25),(52),(56),(65),(5,),(45)),

3. The row index sets for Nodes 5 and 6 are the same as for node 3: Rs = "RG = 1'2,

and the column sets for new nodes are determined from the column partition:

CS = X2 and C6 = x3.

4. The arc types of the repositioned and duplicated arcs stay the same, and the

two new arcs (56) and (65) become down and up ones respectively.

2.1. SUAIMMARY 53

Theorem 2.18 (8 and M on QN) The 8 operator and its dual M, as defined on

the 9eneric node, coves" cuerTj possible transition of a network with N nodes to one

ivith N + 1 nodes.

Proof: By induction:

1. Lemma (9 on g).

2. Assume S up to 9N.

3. Demonstrate that t 6 [Pa , P2] 9N+1 as follows:

* Lemma (cN 0 .V" -4 g4

* Lemmia (B on g);

* the 0 operator is defined to be reversible, which implies that every node

besides the two new ones ni and n2, and every arc that was not incident

to node it can be restored to its prior status as defined by gN;

The dual argument holds by network duality. U

2.4 Summary

We arrived at the begining of this chapter carrying a transformation between linear

programs and communication networks, and some node splitting operators.

* We proceeded to nest the operators and got: node ordering, cross splitting, and

lots of duality through the choice of the first operation.

* The networks with three nodes were characterized in Table 2.1.

* The 0 operator was introduced and two lemmas about collapsing many nodes

into one are proved.

54 CIIAPTER 2. COIARACTERIZING COAIAIUNICATION NET WORKS

" The generic node was introduced, and two lcmmas followed. The first one

showed that all nodes are similar to it or its dual, The second one showed that

all networks can be reduced to some case in C4.

" The generalized forms of the E and M operators were introduced, and then

shown to carry networks first from g4 to 95, and thcn from gN" to to+ .

Finally, Theurcm 2.18 acts as a characteristic mapping from one nctwork to those

having more nodes. Sometimes there is more than one path can be taken to the same

network (associativity), and in addition, the inverse operation need not retrace the

actual path taken to create the network. In the next chapter we will explore the

transformation of networks into subproblems, and consult a parallel oracle.

Chapter 3

Parallel Decomposition

ALMOST daily, researchers in the technical disciplines envisage new and

different uses for parallel computers. Linear programming as a practical

field could never have happened were it not for the invention of the scrial
computer (Dan87J, which revolutionized the approach to complex problems. And

now, the availability of parallel computers will permit the next quantum expansion in

the set of problems that can be solved. The parallel decomposition algorithm will be
a first step in placing mathematical programming in league with other technologies

making use of these new computers.

We view the ultimate information ceanent of a problem formulation as the solution

to the problem. To obtain the solution, we consult an oracle:

solution = O(problem).

Linear program solutions consist of points and/or rays of the primal and dual feasible

regions of the problem. A typical oracle for solving linear programs is the simplex

method:

LP solution = simplex(LP).

This thesis is concerned with substituting various decomposition algorithms for the

simplex method. The decomposition algorithms are governed by a communication

55

56 CIAPTER 3. PARALLEL DECOMPOSITION

network betwcen LP subproblems. Different problem structures will result in diffrcnt

networks and different subproblems. flowevcr, it is possible to dcfine a single general

algorithm having the communication network and the subproblcm formulations as its

parameters:

LP solution = decomposition (network, subproblems).

The goal of this chapter is to take the information contained in an LP and a

communication network, to produce an equivalent set of information in the form of
a system of subproblems and finally to find the LP solution using a parallel oracle

operating on this equivalent information.

1 2 3 ... p Processor Indices

T Read Data
§3.1

E
I
a Fom SubW
p §3.2-3.3 0 Work done serially

e 0I Work in parallel

d 1 Proccssor Idling
T Proces Subs
i §3.4

__I Optrimality (Equilibrium)
Print Solution Detected
§3.4

Figure 3.1: Strings of work.

Figure 3.1 lists the steps of parallel decomposition. Along with each step in the fig-

tre are the section numbers of this chapter that explain the step, and a representation

of whether the step is done in serial or in parallel.

3.1. STA\WING INFORMATION 57

Read Data: The first order of business is to define the problem we wish to solve

and the decomposition scheme used to do it. These arc specified by the original

data (A, b, c) and the communication network g.

Form Subs: The reverse transform from the communication network into a system

of subproblems is covered in Scctions 3.2-3.3. The information obtaincd in the

Read Data step is processed in parallel during this step.

Process Subs: The parallel processors act as information carriers over the network,

performing oracles on subproblems and filtering the solutions through interfaces.

A relaxation of the nested oracle procedure is shown to perform 0(1.1).

Print Solution: From the multitude of final subproblem oracles, we must construct

one for O(1.1). Because the subproblem formulations contain all of the relevant

subproblem solutions, this is a simple filtering process and is done serially.

3.1 Starting Information

In the following discussion, we will assume that our linear program formulation takes

the form given in (1.1), namely

ain c=zX>O(3.)
s.t. ,r: Ax>b.

3.1.1 The Problem Description

We can break down a problem description into two sets of information: the implicit

information (indices and variables) and the explicit information (problem data).

Indices will play an important role in the discussions of problem structure and

communicated information. Not only the constraint and variable indices are used,

5S CIJA PTER 3. PA RA LIEL I CO~fP05! Tf ,

but those for the right-hand side and objective as well. Thus, we detrys for W1 (.11.

a to be the objective index,

s to be the right-hand side indcx,

. to be the row index set, and

C to be the column index set.

As in the previous chapter, when discussing partitions, we will use the same syrr-

bols for the namcs of the primal variables as for the indcx scs of their corresponding

columns, and the same symbols for the names of the dual variables as for the indcx

sets of their corresponding rows. Therefore, 1R. = r and C = x for LP (3.1).

The values of the variables lie in vector spaces that are dimensioned in terms of

their index sets. We see for LP (3.1) that

x the primal variables lie in Rc, and

7r the dual variablt% lie in R7 .

Finally, the explicit information needed to give substance to the implicit informa-

tion above is the problem data. Wc will take the convention of positioning this data

within the problem by specifying its indices. For instance for (3.1):

A the constraint matrix is indexed by (r, x),

b the right-hand side vector is indexed by (7r, s), and

c the cost vector is indexed by (a,x),

This completes the specification of a linear programing problem

3.1.2 The Communication Network Description

The previous chapter explained the process of partitioning the row and column index

sets. It also showed how communication networks result from this process. Rather

than operating from partition information, we shall assume that the decomposition

information is in the form of a communication network.

3.2. INTERMEDIATE INFORM9TION 59

We repeat the definition from Chapter One for completeness. The communication

network is the fivc-tuplc,

g = Vi Ar, a A,

where the tuples are defined to be

A" set of nodes,
7W, node i's row index set,

C, node n's column index set,

A set of arcs, A = {(n 12) E : there is an arc from n to 112),

T. the type for arc a (up, down, left, or right).

This completes the description of the decomposition scheme to solve LP (3.1).

3.2 Intermediate Information

Several information structures are constructed from the starting information in order
to facilitate the formulations of the subproblems. These are: the Incidence Graph

used to derive subproblem interfaces, the A rc Index Sets which index passed informa-

tion, and the Partition Graphs which identify implicit subproblems and synchronized

information.

3.2.1 The Incidence Graph

(A,b,c) --4h

The incidence graph h is created from the explicit information (A, b, c). It is bipartite
with one class of nodes over the objective and constraint indices and the other class

of nodes over the right-hand side and variable indices. Two nodes are connected

(always between the two classes), if there is a nonzero entry in the data (A, b, c),

60 CIIA PTEIL 3. PA I RAL LEL DECOMPOSITION

corresponding to the two udices of the linked nodes. For instance, if
::r:~Al 0 ' '-- b andiC=

(2 7'2 A ,2

then the corresponding incidence graph is that in Figure 3.2, and

It= C{% I 1,-,, 1, X=,2} ,),(, , I),071 X0),(r2 X,0, (1-11 X)}).

The nodes of h correspond to aggregations of the rows and columns of the linear

program so that it represents the incidence between blocks of cocfflcients. Note that
there is tit er a link between the two nodes a and s, but all other links between the

two classes of nodes are possible.

K3

Figure 3.2: An incidence graph.

Future research along these lines will probably concern various optimal partition.

ing schemes, based oi the coupling bctwccn subproblems and the level of computation

ne-ded to obtain subproblem solutions. Some good refercnces on incidence graphs

arc (Ros70, Bun76, Tar76].

3.2.2 Arc Ii'dex Sets

kg,h) --4 (',,,)

Rccall from the Subproblcm Interface Theorcm that we nccd only pass a selection of

a subproblcm's solution over any givcn arc. The selection is xnade the arc's index set.

We rcprcscnt these scts as follows:

3.2. INTERAIEDIATE INFORMATION 61

* if a is a vertical arc (up or down), it has a row coupling index set 7",, and

" if a is a horizontal arc (left or right), it has & column coupling index set Co.

This means that either rows couple partitioned columns or columns couple partitioned

rows. An arc is represented by two nodes. Thus arc index sets will have two nodes

as subscripts. Node index sets have only one node for a subscript.

Let the arc (iz n2) be horizontal; then

71,,,, = (k :V paths jkl in the graph h, k E (7,, n T7.,),j E C,,I E C 2).

Let the arc (t, i 2) be vertical; then

C11 ,% = {j : V paths ijk in the graph Ihj E (c, nC.,) uLs, i e 7",,k 6 7,,A.

Secondly, the theorcm says that according to given interfaces, the objective (right-

hand side) values must appear in the topmost (leftmost) subproblems containing con-

strained variables (non-vacuous constraints), respectively. When a topmost subprob-

lcn has unconstrained variables or a leftmost subproblem has vacuous constraints,

the theorem also says that an incoming up or left arc, respectively, carries the value

of Ji or *h, respectively.

To determine in general whether an up arc ought to carry cJi along with ': and

whether a left arc ought to carry *,b along with fr, follow the. simple rules:

1. up arcs carry ' if there are objective coefficients in the formulation of a sub-

problem below, and

2. left arcs carry *Tb if there are right-hand side coefficients included in the for-

mulation of a subproblem to the right.

In other words:

if T0.2 = up, and 33 t., n2 s.t. c,,(j) = c1 for some j e C,,

then C,,,n 2 4- CIn 2 U s.

62 CIJAPTER 3. PARlALI EL DECOMPOSITION

Left arcs will carry 0 if there are right-hand side coefficients included in the formula-

tion of a subproblem to the right:

if Ts, = left, and 3n 3 _< n2 s.t. b.3(i) = b, for some i C 7%,3

then R.",M= +- 11,,42 U o.

3.2.3 Partition Graph Description

Partition graphs identify implicit subproblems created by cross-neting the decom-

position operators. They are used to designate what information must be synchiv-

nicd by determining how A,0,1, and I arc indexed. The solutions of subproblems

corresponding to the nodes in a partition graph define the solution to an implicit

subproblem. One that is not solved explicitly bccause it was decomposed. Before

formally introducing the partition graph, we first define the following three graphs:

a vertical graph is a graph with all vertical arcs,

a horizontal graph is a graph with all horizontal arcs, and

a subgraph is a graph s = (A, 1,A), written s C g where g = (A,Ar), if and only if

A¢ C .A and A, 5A n AJ,.

The information contained in the communication network g is used to generate

its set of partition graphs P,, and their accompanying row and column index sets R".,

and C,, for all p E Pq:

Ehre
weP is the set of all partition graphs in g,

?p is the row index set for partition graph p E 7., and

Cp, is the column index set for partition graph p E 7'9.

3.2. INTERMEDIATE INFORMATION 63

Definition 3.1 (Partition Graph) A partition graph p is a hori:ontal or ucrtical

subgraph of g crcatcd by cross nesting onc operator within another. The partition

graphs of the communication network g are containcd in the sct P . -ach graph p is

a colicction of nodes Ar. conncctcd by arcs A,.

For all p = (p, Ap) E P,, we definc row and column indcx sets to be the union of

the node index sets contained in the graph:

RIO U P" C, U C..
.E. . Eo.'4

Lemma 3.2 (Partition Graph Ordering) There is a partial ordcring on the par-

tition graphs 'P of a givcn network g E (N, based on the highest ordercd node conl-

taincd within them.

Proof- There is an ordering on the nodes, and all partition graphs are maximally

connccted on horizontal or vertical arcs. Thercfore, no partition graph can be a

subgraph of another, and there must be a node in each that is of greatest order. Such

nodes from different partition g.aphs arc different and in turn partially ordered. I

Ierc are two properties of partition graphs.

Property 3.3 (Similar Rows or Columns) If p is a hori:ontal partition graph,

R,, is constant for all n E A'.. Likewise, if p is a vertical partition graph, C. is

constant for all n E A/p.

Property 3.4 (Parent/Child Incidence) If p and c are partition graphs and p is

the parent of c, then if p is vertical, C, = C, and 1Z, = T,,, where n = A'; fn AVf.

Likewise, if p is horizontal, 74p = R,. and C, = C, where it = Arp flA'.

Take as an example, the application of a on the bottom node of the D-W network

9D. The two partition graphs from that network are displayed in Figure 3.3. Their

row and column index sets are

= 71 U7 2, R;12 =

04 CIA PTER 3. PA ILhA 1, 1 1E DECOAIPOSITION

Figure 3.3: Partition graphs from splitting the bottom node.

The information carried by the uip arcs from p2 to node 1 must be synchronized alnI

added to (2.9) as at single column. When formulating this subproblem, we purposely

included a single set of variables I with which to take combinations of these columns.

3.3 Forming Subproblems

We concern ourselves now with a philosophical question on the information contained

in a linear program specification, and how to obtain that information from a commu-

nication network in order to fully specify the subproblems used in a, parallel oracle.

The following discussion concerns the dichotomy of structure and content. Trans-

lated to mathematics, this terms become symbols and meaning.

Definition 3.5 (Symbolic Representation) An object is rcprescztel symbolically

by the maembers of its structure and their relaions to each other.

Lemma 3.6 (Symbolic Linear Program) A symbolic representation of a linear

progiam is contained in RZ and C and ant assumed standardI form (3.1).

Since subproblem i a linear program, its symbolic information consists of 7%,, and

C,, and an assumed standard form.

Theorem 3.7 (Necessary Information) The following information, is required to

obtain a solution to a linear program: a symbolic representation in the form of

3.3. FORMING SUBPROBLEMS 65

row and column indices *R and C for the default formulation (3.1), problem data

in the form of (A, b, c) for (3.I), and an oracle.

To define the reverse transform, the indices of each lincar program subproblem are

obtained from the communication network by identifying thcir names and subscripts,

and determining their dimensions. The result is a symbolic reprcsentation of each

subproblem. Together with a description of the problem data and the simplex nethod,

we can perform the oracle on any subproblem.

Definition 3.8 (Symbolic Subproblems) The reverse transformation is an cx-

taction of the symbolic representation of the subproblems front the communication

network. life define it as a two step ptocess:

Index Sets The subproblern index sets are defined in Tables 3.1 and 3.3 as a trais-

lation from the nodc index sets and the arcs cntering the node. Each index has

two parameters: its subscript, and its dimension.

Default Formulation Tables 3.., 3.4, 3.5, and 3.6, comprise the standard subprob-

lem formulation, defined in terms of the incidence betvcen the subproblcn's row

and column indices. The standard subproblem formulation is sunimari-cd in

Table 3.7.

3.3.1 The Formulation Procedure

We follow a procedure of determining the subproblem index sets, which then deter-

mines the default formulation. From the position of a subproblem's corresponding

node in the communication network (e.g. topmost or lcftmost etc.) we can determine

the partition of the original data over the set of subproblems.

Original Variables: The variables X, and y', appear in a subproblem based on

the node index sets. If ?, is not empty then 7-,, appears. If C,, is not empty then

x,, appears. It is possible for one to appear and not the other. These results are

summarized in Table 3.1.

66 CIIAPTER 3. IAItALEI, DECOMPIOSITION

Dimension Subscript Appears

W . it if nn 94 0

Table 3.1: Original variables.

Original Data: Independent portions of A, b, and c will be used to define subprob-

lems based on their node index sets:

An= (Aij i E El1) C,j.

Lemma 3.9 (Placement of b and c) The right-hand side coefficients indexed by

i E 7%, for node n are placed as follows:

b(i) Ib if n is maximal such that (ij) E Ah for some j E C,,{0 otherwise.

The objective coefficients indexed by j E C, for node n are placed as follows:

c /U) cj if n is ,axital such that (ij) E A, for soinc i E Rn,
0 otherwise.

Proof:

1. Begin with full arc index sets and leftmost and topmost placement of b and c,

respcctivcly.

2. By the Subproblem Interface Theorcm: we redefine the arc index sets of those

down and right arcs (n n') incident to topmost and leftmost nodes n E JV and

thus move down all c,(j) : j E C - C,.,, and right all b,(i) : i ER_ -

3. For each down arc, there is a corresponding up arc that must have its index

set augmented by a for the objective row if a node below contains any original

objective coefficients.

3.3. FORAING SUBPROBLEMS 67

4. Steps 2 and 3 can be repeated as often as necessary to achieve the result in

Lemma 3.9.

N

Original data are indexed by the node index sets. Both the data and their indices

carry the same subscripts. These results are summarized in Table 3.2.

Indices Subscript Appears

A 7rX it if RXC #0
b r,.s it if 7"z 0 0

c , X i if C" # 0

Table 3.2: Original data.

Incoming Arcs: The added variables and added data of a subproblem are those

other than the originals. Their appearance in the formulation is governed by the

incoming information, i.e., the incoming arcs. They form structures for handling the

information as it arrives, placing it into the formulation so that it will have the proper

effect.

An ambiguity arises here. Information transported along up (left) arcs is used

to form additional rows (columns) in the formulation. If there is more than one up

or left arc, there can be a choice as to how the information gets incorporated into

the formulation that is not specified in the communication network. That choice,

for adding columns, has to do with the number of convexity constraints to keep.

One is sufficient, but more than one will give the region being approximated greater

resolution. Our default choice will be for the latter.

When the incoming up arc has its source in a different partition graph, there

is no choice; there must be one convexity constraint for each such partition graph.

This forces the information from each partition graph to be coordinated into one new

column. Likewise, for left arcs the default will be to add individual constraints, and

6S CIJAPTER 3. PARALL EL DECOMPOSITION

only when the arc's source lies in a different partition graph will we add only one

constraint for all the information arriving from that graph.

In the following descriptions of added variables and data, we adopt the convention

that the generic incoming arc to node n is a = (n,, n).

Added Variables: All added variables are subscripted by the incoming arc that

generated them, except for the case when the source of the ince-ning arc is in a child

partition p. The variables A, 0, 1, and t should then be subscripted by p. This causes

a single primal or dual convexity constraint to be created for each child partition as

required. ''ble 3.3 shows which added variables are affected by synchronization.

The dimensions K,,, and K are defined as

K : the number of solutions broadcast by subproblem n E Al,

K, : the number of solutions broadcast by partition graph 1) E ',

where the term broadcast refers to the practice of communicating a subproblem solu-

tion over the outgoing arcs of the corresponding node.

subscript appears when incoming Dimension

A a or p left arc K,,, or K,
v a down arc 1

4 a up arc C.
w a right arc 1
0 a or p up arc 1

I a or upp arc K,, or IC,
u a right arc 1
y a left arc

w a down arc 1
S a or p left arc 1

Table 3.3: Added variables.

3.3. FORIING SUBPROBL&I-S 69

Added Data: These structures are generated by incoming arcs. Information car-

ried by up and left arcs is accumulated, whereas that carried by down and right arcs

is overturillen. This important point separates standard LP decomposition from the

class of totally symmetric algorithms. Oit aethod proposed to ovcrcome this is to

incorporate a proxinial-point penalty term into the objective function (Roc76, Go186,

BET89J. Table 3.A shows which data are affected by synchronization. The indexing of

each data itcm positions it with respect to the subproblem variables and constraints.

When an addcd variable is subscripted by an incoming arc, the incident data is sub-

scripted by the ieverse arc. Tle reverse of i rc a = (i,, I) is ri = (i, n). When an

added variable is subscripted by a partition graph p, the incident data , and §, are

subscripted by p also. The incident data fi and k are subscripted by the incoming

arc. The indexing then defines a single block of constraints or columns, since one is

subscripted by the arcs and the other by p.

W\e now offer word descriptions of the added data presented in Table 3.4:

: the optimality indicators for the dual solutions that are passed over arc a,

: the optimality indicators for the primal solutions that are passed over arc a,

l"a : the translatcd dual solutions that are passed over arc a,

.ka : the ranslated primal solutions that are passed over arc a,

la : a matrix that translates dual (primal) solutions passed over up (left) arc a.

The passed information is either placed directly into the formulation of the destina-

tion subproblem, or incorporated into an existing structure. For down and right arcs,

only the latest solution is used. The new information is written directly over the old

and appears in the formulation as or gj. For up and left arcs, the information

is accumulated, and appears as an expandable structure in the formulation of the

destination subproblem. Each new piece of information causes the row or the column

dimension of the structure to increase by one, and so these dimensions are indexed by

the number of times the scurce subproblem has been solved. Specifically, for k E Kn

70 CIIAPTER 3. PARALLEL DECOMPOSITION

Subscript incoming Indexkig

1 none down arc 0, s
aorc up arc 0,1

X a up arc b,
-I up arc 0, x

, down arc v,X

O a down arc v,s
6 down arc v, w

6 a down ac a, t

1 none down arc a, t

i or c left arc Alt
II left arc A, y

-I a left arc r, y

right arc r, U

t right arc 0, u

d a right arc wu

d a right arc w, s

Table 3.4: Added data.

3.3. FORMING SUBPROBLEX1S 71

and arc a = (11,,),
I kt h solution to nl is optimal,

0 otherwise,

The following matrices are permutation matrices (not necessarily square). Their

entries serve to translate the primal (dual) solution of an up (left) arc into the rows

(columns) of the destination that are coupled to the source. For a given vertical arc

a = (1,7)
1 if the j element of the set 7 is i,

(0 otherwise.
If a is horizontal, then

f= { oif the ih element of the set C. isj

0otherwise.

Non-negativity: Variables restricted to be non-negative and others not sign re-

stricted are given in Table 3.5. The original variables x, can be either non-negative

or free. The default is free. When i is a bottommost node, x > 0 with a non-vacuous

original column. It is true that x, could be non-negative in subproblems that are not

bottommost, but it is sufficient that the condition hold in any one subproblem. We

chose the bottommost one to guarantee that it has at least one extreme point.

Index Setting
l. >0
u, > 0
X, free or > 0

Ya free
w, free

t I free

Table 3.5: Non-negativity.

72 CHAPTER 3. PARALLEL DECOAIPOSITION

Constraint Types: The types for constraints, whether equality or inequality are

given in Table 3.6. There are two choices for the r. corresponding to the primal

constraints. The default is equality. If n is a rightmost node, the constraint is an

inequality as shown. Similar to determining non-negativity for x,, all r, constraints

could be inequalities but it is sufficient for only those in rightmost subproblems with

non-vacuous original constraints.

Index Setting
A41 AP >_
V, >

7r, =or>
% =

Wa >

Table 3.6: Constraint types.

3.3.2 Summary

The variable and data information tables are partially summarized in Table 3.7.

Subproblcm formulations are derived from this standard form. Given a node it and

all its incoming arcs, e.g., a = (n,n), this table will generate one subproblem in the

schema of the communication network.

The most interesting feature of Table 3.7 is its symmetry with respect to the

relations between Dantzig-Wolfe and Benders dccomposition. The Greek and Roman

symbols are interchanged by taking the transpose. Another feature to notice is that

the series of entries Xa, 5a, a, and P-a are all added data structures to handle passed

information with entries in real space, while the series of entries g, l', -I, -a,

61j, 5 are added structures with entries in binary space. The entries in the second

series serve as indicators of what functions their corresponding real space information

will serve, and how they will impact the subproblem formulation. Together, both

3.4. THE PARALLEL ORACLE 73

LIU_4__S > -ja
r a Ii An fIa A" -, / b.

Vt Xa -a 0

04 fl" __ _ __

> 0 > 0 frcc/_. 0 frce fi-c fire

an 0i 0 Sa 1

Table 3.7: Template for generating subproblems.

series are a constellation of structures bordering the original data A, like the planets

orbiting the sun, each bringing to bear its own fundamental force on the central mass.

3.4 The Parallel Oracle

In this section we assume that we have available to use a collection of decomposition

subproblems that are an equivalent symbolic representation of some original LP for-

mulation. When coupled with data values and an oracle we can obtain a solution to

the original LP.

When we finish solving a subproblem in a decomposition scheme it is well known

that any neighboring subproblem on the network is now eligible to receive the solution

for the purpose of updating its formulation. The discussion that follows comes from

a very simple idea:

Why not solve all of the neighboring subproblems at the same time?

Thus, we will modify the nested oracle, which was designed to work between two

problems (a Master and a Slave). There are two steps:

9 enlarge the set of communicable information to include interior points of the

Slave, but keep it finite, and

74 CHAPTER 3. PARALLEL DECOMPOSITION

* broadcast information instead of having only two-way conversations,

where we intend the term broadcast to mean that a node communicates information

ovcr its outgoing arcs to all of its ncighbors in a communication network. The first

step completely blurs the distinction of Master and Slave, and the second suggests

using a parallel computer. The proof of the oracle is in terms of the validity of the

abovc-two relaxations of the ncsted oracle.

Definition 3.10 (Relaxed Oracle) When consulted, the rdaxed oracle 0,(.) pro-

vides either:

" a primal feasible point i or a dual feasible point r,

" a feasible primal ray X- or

" a feasible dual ray f,

where this information is taken from a finite set that includes all extreme points and

extr-cei rays.

Lemma 3.11 (Relaxed Oracle) The finiteness argument for the D- III method is

not inhibited by a substitution of the relaxed oracle O,.(') for the regular oracle 0(.)

in Steps 2 and S.

Proof: A review of that argument will show that the information communicated up

and to the left between subproblems has two essential properties:

" the information comes from a finite set;

* the finite set includes all extreme points and rays.

I

Lemma 3.12 (Broadcasting Information) The practice of broadcasting sub prob-

lem solutions does not inhibit finite convergence of the D- W method.

Proof: The proof is simple. Broadcasting does not alter the set of communicable

information when the relaxed oracle is used. I

3.4. THE PARALLEL ORACLE 75

The following is a corollary to the Reverse' ransform Theorem that will be referred

to for direction in the Parallel Oracle.

Corollary 3.13 (Subproblem Modifications) Arc types govern the types of rood-

ifications madc to their destination subproblcms as follows:

up are add a column,

down arc modify the objective function,

left arc add a row,

right arc modify the right-hand side.

The Overall Solution Lemma tells how the solution of (3.1) is constructed from

the individual subproblem solutions.

Lemma 3.14 (Overall Solution) The primal and dual solutions (i,*r) to (S.1) are

= U f and = U i*
neArL nEAru

where Xb are the leftmost nodes of g and Ar are its topmost nodes.

Proof: By induction on the levels of partition graphs.

1. The lemma is true for any vertical or horizontal partition graph:

" The lemma is true for the D-W and Benders Methods.

* Assume the lemma is true for a partition graph with I levels.

" Use D-W or Benders method on the rightmost or bottommost two sub-

problems of a partition graph with I + 1 levels and reduce the number of

levels to 1.

2. Assume the lemma is true for I levels of partition graphs.

3. If another level of partition graphs is added to the network, it will be to the

right or below, leaving the solution still at the top and leftmost nodes. So the

lemma must be true for 1 + 1 nodes also.

76 CIIAPTEfl 3. PAIALLEL DEJOMPOSITION

The statement of the parallel oracle is based on the premise of independent work

units we will call jobs. Our work units arc modifying and solving subproblems, so there

is a one-to-one correspondence between jobs and subproblcms. Jobs are submittcd to

be serviced by any processor, and held pending until one becomes available. \Vc use

the term non-pending in the theorcm to refer to those jobs that are not waiting to be

processed; either running or not submitted.

Theorem 3.15 (Parallel Oracle) This procedure performs 0(3.1):

1. Formulate all of the subproblcms {1,...,iV) and submit a job for each one.

2. Repeat the following until there arc no more jobs:

* Get a job with its associatcd subproblem n.

U Lse the Subproblem Modification Lemma to determine what modifications

to make to the subproblem based on any new information.

* Consult the oracle 0(n).

* If the oracle does not repeat the same solution thef broadcast it and submit

a job for each non-pending neighbor.

Proof: We nccd to show that solutions provided by 0(.) for any subproblem will

satisfy the restrictions for information passed over arcs. These restrictions are defined

by nesting the relaxed oracle 0. The proof is by induction on the number of levels

of partition graphs.

1. Information passed up and left from one partition graph to another satisfies

* The oracle-provided solution to a D-W Master problem always satisfies the

conditions for the relaxed oracle.

* Assume that for vertical partition graphs with I levels that oracle provided

solution of the topmost node satisfies the conditions for the relaxed oracle.

3.4. T lE P:ARALIAM ORACLE 77

e 'rake a vertical partition graph with I + I levcls. The non-topmost Ilodes

implicitly represent a)-\V Slave problem and they themselves satisfy the

relaxed oracle by the induction step. The topmost node must also satisfy

the relaxed oracle by the Master/Slave rclation and by the fact that a top

node in a two-node scheme also satisfies the relaxed oracle.

Take the dual of the above argument to prove the case for left arcs.

2. Assume the leImma is true for I levels of partition graphs.

3. Take a network with I + I levels of partition graphs, where the first one is

vertical. The second-level graphs provide solutions to the first level that satisfy

the relaxed oracle by the induction step. By Step I, the first level must also,

and thus all I + 1 levels.

This chapter has been an outline of how to implement parallel decomposition

from start to finish. We assumed that the work of defining a communication network

was already done, and that the remainder of the work was to form subproblems and

execute the parallel oracle. One subtle point was made in the Overall Solution Lemma,

and that is that it is a relatively simple matter to construct the overall solutions. By

more traditional methods, this is often a tricky exercise in data managemcnt.

Finally, the simple loop of: Listen, Modify, Evaluate, and Boadcast is our gerbil

on a treadmill, which together with many others like it, are more powerful than the

strongest workhorse; and faster too. We will see this conclusion supported in the

results of the next chapter.

Chapter 4

Results for Staircase Linear

Programs

OES parallel decomposition make effective use of the machine it is designed

to exploit? A Fortran77 program which solves Staircase Linear Programs

was written to find a practical answer to this question. This code has run

on two different shared-memory multiproccssing computers: a Sequent Balance 8000,

and an IBM 3090/GOOE. Preliminary results on the Sequent computer were reported

in (EntSSJ. More extensive results on the IBM 3090 will be reported here. The parallel

algorithm is inherently message based. As a rcsult, the shared-memory implemen-

tation actually simulates a message-passing/distributed-memory parallel computer,

using the Intel iPSO subroutine library as a standard interface.

Naturally, the decomposition code must solve linear program subproblems. This

is accomplished by calling MINOS 5.1 [MS87J as a subroutine lEnt87]. Likewise, the

best comparison of the decomposition method is to solve the same test problems us-

ing MINOS as a stand-alone system. This approach allowed many implementation

differences to be eliminated, and permitted the merits of decomposition and paral-

lel decomposition alone to be discussed. The. tests of the decomposition code were

designed to:

78

4.1. GENERAL INFORMATION 79

" produce results from which to judge the merits of parallel decomposition,

" investigate the algorithm's performance under different parameter settings,

" provide performance cxtrapoiations outside the set of test problems, and

" outline the current limitations of the code and areas for improvement.

Emphasis is placed on demonstrating that decomposition and added processors

provide faster solutions, with acceptable accuracy.

Our presentation of computational results is based on the suggested standards of

(CDM79] and [JBNP89. In addition, several similar presentations were considered,

including [IlieS2, IILSb). Section 4.1 covers the theoretical basis of the computer

code, and its software implementation. Section 4.2 gives details of the experimental

apparatus and presents results that support the appropriateness of parallel dcecom.

position on staircase problems. Finally, the conclusions section argues the case for

parallel decomposition in general and traces directions for future work in the field.

4.1 General Information

Method: Staircase subproblems were formed and solved on an "as available" basis

using p processors. Subproblems are considered available when they have just received

new information from an adjacent node on the network. When a subproblem finishes

optimal, both the primal and dual solutions are communicated. When infeasible,

only the dual solution is broadcast, and when unbounded, only the primal solution

is broadcast. No dual optimal solution can be sent until one has been received,

except for rightmost subproblems. As a result, the Phase I algorithm (for obtaining a

primal feasible solution) is a serial one. Computational results exhibit this property.

Also, the result:s show parallel decomposition outperforming the simplex method on

problems having more than 2000 nonzero entries.

so CHAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGRAMS

CM

,~cI
r l"

n-I n+1

Figure 4.1: Dimensions of a step.

Memory Space: The size of the Fortran code and the amount of memory required

for data storage are parameterized in the followir.g terms:

N = # subproblems (max N is R = 51),

p = # processors (max p is P = 20),

r. = # coupling rows for arc a (max r. is r. = 300),

r, = # nonzero rows in n's partition of A - r(,,+l)v

c. = # columns in n's partition of A,

C,, = # nonzeros in n's partition of A,

F,, = # rows in subproblem n,

= # columns in subproblem n, and

2. = # nonzeros in subproblem n.

The maximum values for N, p and ra are given for the test configuration. Figure 4.1

represents the pattern of nonzero coefficients near the nth partition. The lengths of

the bold lines show the dimensions of r,,, r,,.+,, and c, for this partition. Closed-form

equations for the subproblem dimensions (F,,, ,, E,,) are

Fn = rn + rn,.-! + rn,n+l,

En = Cn + rn,t+l

En = Cn + rn,n+ + 2r,.-.1

.1.1. WENEIZlAL INFORMATION Si

Given the values of N, 1 c,, ,, an expression for the total amount of shared mcmory

used by the program can be calculated as

bytes = ,19GI + 16j) + 16N . + 8 E"(2,(1.25 + ,7.5F,/5) + 7.5P,, + 6.75,).

Software: The computer code presented hcre is bascd on MINOS 5.1. It uses

MNOS in its entirety, with a few extra routines spliced in hcre and thcre. MINOS

consists of three basic modules: Input, Solve, and Output. The parallel decomposition

algorithm has two additional modules. The first, Form Subs, is inscrtcd after the

MINOS Input module, and the second, Process Subs, governs parallel MINOS Solves

and dccomposition message handling. In addition, a small amount of extra work is

involved in collating the many subproblem solutions into one overall solution before

they are Output. Thus, the Input/Output work is slightly greater for decomposition.

MPS and SPECS Input Files: These files are input using the MINOS Input

Module. The standard MPS file is input to determine the Problem Data. It is

assumed that. this MPS file describes an LP that has a block diagonal or staircase

structure. Normal MINOS input files are sufficient to sclve the LP as a single large

problem. However, to decompose a block diagonal structure into n subproblems,

additional information must be provided in the DSPECS file.

DSPEOS Input File: This file contains the additional information needed to com-

plete a staircase decomposition linear program. Au example of such a file is:

0 Debugging Parameter

50 % of extra rows to add to each subproblem

100 % of extra columns to add to each subproblem

3 number of subproblems

20 30 number of rows and columns in the first subproblem (optional)

20 30 number of rows and columns in the second subproblem (optional)

20 30 number of rows and columns in the third subproblem (optional)

4 number of processors (actually specified in JOL)

82 CIAPTER 4. RESUILTS FOP, STAIRCASE LINEAR PROGRAMS

Since this is strictly Benders decomposition on a staircase system, the number of sub-

problems N equals the number of nodes, and JV = ,..., V) A = {(12),(2, 1),...,

(N - 1, N), (Al, iV - 1)), T = left, if a = (ri, it - 1) for some i E A(, and T = right, if

a = (it - 1, it) for some iz E Af. This means that the entire communication network is

defiled in terms of N and jC,,I, Via E M. The sets RZ,, and C,, are well defined given

the number of columns in each partition and the fact that the elements of R. and C

are ordered.

Output Files: Each processor has a standard Fortran output file, and thcrefore the

MINOS-type iteration log of each subproblem solved by each processor will appear

in the corresponding file. In addition, the root process appends decomposition and

parallel computation summary statistics, and the overall LP solution in its standard

output ,Me. The solution has the same format as MINOS. Finally, one short summary

file is written by the root proce'ss that also contains the summary statistics.

Forming Subproblems

The serial version of this module was first documented in [Ent87. Chapter 3 described

for the most general case, how to form subproblems. The staircase version implicitly

assuncs a specific communication graph as in Figure 4.2 and that no row or column

Figure 4.2: Linear communication network for staircase pattern.

permutations are necessary to obtain a staircase pattern in A. Before the Formn

Subs step, the subproblems are dimensioned based on these implicit assumptions. No

intermediate information, as outlined in Chapter 3, need be used. A simple heuristic

is used to provide subproblem dimensions. The object of the heuristic is to partition

a

4.1. GENERAL INFORMATION 83

the ordered columns of the matrix into a user-specified number of sets n. The columns

in each set arc adjacent, and they are ciosen so as to minimize the number of coupling

rows between the columns of adjacent sets. First a profile function f(.) : C -4 7. is

calculated, where

) max (i El7Z: Aq 00) - min {i E 7?.: A, 0 #0).j<1510<:5lcs

Then N - 1 local minima are found so that the distances between them arc nearly

the same. It is also desirable to get the local minima as small as possible. If the

problem has not enough steps to supply N subproblems, a warning is printed, and

the number of steps found is used.

Processing Subproblems

When the solution of a neighboring subproblem arrives at the mailbox of a givel

subproblem, an independent job is defined. (Independence between jobs means that

they can be executed concurrently.) Messages from different subproblems can be

handled by a single job as described in Table '1.1.

Receive Message(s)
Make Modification(s)

Perform Oracle
Broadcast Solution

Die

Table 4.1: The life of a job.

Jobs are serviced, in the order they were made available, by any available proces-

sors. Messages from different subproblems can be handled by a single job as described

in Table 4.1, which lists the four associated steps. The first round of jobs may skip

the first two steps if there are no messages to receive.

ill CHAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGRAMS

Since this is an implementation of Benders decomposition, if a primal solution

is received, the RIIS is modified. If a dual solution is received, a new constraint is

added.

The oracle is periormed by a subroutine call to (he Solve Module of MINOS. A

pointer, passed as a parameter, directs MINOS to the proper data set, and in return,

some solution form is provided according to the oracle's definition.

Different information is broadcast under the differing exit conditions of the Solve

Module.

When optimal, the primal extreme point is passed over an outgoing right arc (if

onc exists), and tlhe dual extreme point is passed over an outgoing left arc (if one

exists) only if there is already an extreme point in the present subproblem's extra

constraints, or it is rightmost. This guarantees dual feasibility of the information

passed on left arcs.

,n unbounded, in addition to the primal extreme ray, a primal extreme point

adcast over an outgoing right arc (if it exists). Since MINOS is an implementa-

tion of the simplex method, the extreme point is available and used.

When infeasible, the dual extreme ray is passed left. In this situation, the par-

allel decomposition algorithm is actually serial, bec;tuse only one new job is created

from that finishing. Some test problems spend much of the time with infeasible sub-

. ,'oblems. An extreme example is S0205, which has only a single nonzero objective

coefficient in the leftmost subproblem. This makes all but the leftmost subproblem

feasibility problems: we need only find a feasible point because the objective is vac-

uous. The decomposition algorithm can be made parallel by pxssing an infeasible

primal solution to the right, but this information must not be relied on as part of an

overall solution. At the time of this writing, we have yet to implement this feature.

4.1. GENEBAL INFORMATION 85

Convergence and the Termination Criterion

Dual solutions arc extreme points of the dual feasible region of the neighbor and

thcrefore finite in number. If a dual solution corresponds to a non-binding constraint,

the job is not cxccutcd. Eventually, no new jobs will be created; at this point, an

optimal solution has been found.

To test whether a constraint will be binding, the objective value of the subproblem

n2 that sent the dual extreme point is compared with the value of the variable t in

subproblem it where a = (112,n 1) is the arc that carried the message. Since t. is a

lower bound on the value of --n2, if

Z,,2 - t. < tol,

then the constraint will be non-binding. The value of tol is the default feasibility

tolerance used by MINOS.

Discarding Constraints

Tyrically, a large number of constraints will be added to a given subproblem. Ilow-

ever, not all of them are necessary to obtain an optimal solution. At most I'R J can

be binding at the final solution. We actually keep 17.1 + 2 for good measure. The

decomposition code overwrites the added constraints that are no longer binding. It

replaces the constraint that has been slack for the greatest number of solves.

Communication

Messages contain a quantity of information that is a function of the number of cou-

pling constraints r. between the communicating subproblems. Table 4.2 gives the

lengths of each message type in bytes. The maximum message length is 16*(3+86) =

1424 bytes for all the test problems.

Sending a message involves loading it into a buffer and copying the buffer into the
proper mailbox. Receiving a message involves copying it from the proper mailbox

SG CHAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGRAMS

Message Bytes
Primal Point 8 * (3 + r.)
Primal PoinL and Ray 16 * (3 + r)
Dual Point or Ray 8 * (4 + r.)

Table 4.2: Message sizes.

into a buffer. Subproblems have one mailbox for each incoming arc. Each mailbox

is capable of holding only oue message. If a new message arrives before the old

one is read, the old one is discarded. Discarding messages in this fashion does not

affect finite convergence (but according to [IISL88J, it is possible for such retained

information to be used to speed convergence).

Basis Factorization

MINOS maintains a basis factorization that is updated by the decomposition code as

appropriate after each modification to a subproblem. The routines for this purpose are

in the software package called LUSOL and are documented in [GMSW86]. As a result

of making both row and column updates, the factorization needs to be recalculated

only when it becomes inaccurate or too large. The default settings from MINOS are

used to govern refactorization.

4.2 Testing

The following experiments were performed to test the performance of parallel decom-

position algorithms. A test suite of twenty-two staircase linear programs were solved

with different partitions and different numbers of processors. The conclusions are

that the algorithm is consistently well behaved in its use of additional processors and

that it outperforms the serial algorithm (the simplex method) in most cases, when

using only four processors.

4.2. TESTINIG 87

4.2.1 The Test Environment

We report the test environment so that the interested reader may reproduce the same

conditions on a variety of parallel machines.

Language Fortran 77 with IBM Parallel Fortran Extensions
Compiler IBM Parallel VS Fortran with VS Fortran V2 Rcl 1.1
Compiler Options No Vector, No Parallel, Optimize Level 3,

Dynamic Shared Common

Computer IBM 3090/600E,
2Gbytcs shared virtual memory, and

128Mbytes real extended memory.
Operating System MVS/XA V2.2.0

Code + Local Common 0.62 Mbytcs
Shared System Common 0.27 Mbytes
Shared Data Common 1.60 Mbytes
Total Shared Common 1.87 Mbytes

Total Memory 2.49 Mbytes
Tolerances MINOS Defaults
Message Passing w/o locks

Job Flow Control with !ocks

The processors were aligned after dispatch with a barrier.

4.2.2 The Test Suite

All but three of the twenty-two staircase-linear-program test problems were chosen
from a collection of fifty-three used by Lustig [Lus87] in a performance evaluation of

the simplex method. Included in his report are pictures of the patterns of nonzeros
for the test suite: see Appendix B.

Table 4.3 lists the LP dimensions for the test suite. The problems are ordered
by the number of nonzeros. All but three are part of a set of test problems made
available by Gay [Gay85] and distributed over nellib [DG87]. The DIET series of test

SSC IAPTER ,I. RESULTS FOR STAIRCASE LINEAR PROGRAMS

Prob. # Prob Name Rows Cols Elems 01. Value (netlib) Nellib #
1 DIET"2 51 12 48 1.8 (XXXXUUUXXXE.+Kk NIA

2 DIET3 18 72 2.775(000000000E+02 N/A
3 DIET7 15 42 168 6.4750000000 E+02 N/A
4 '3= 206 203 552 -5.2202061211707E+01 15f
5 SCAGR7 130 140 553 -2.3313892547843E+06 17f
6 SCORPION 389 358 1744 1.878124822738!E+03 21f
7 SCAGR25 472 5 - 2029 -1.4753433060769E+07 lt
8 SCTAPI 301 480 2052 1.4122500000000E+03 26f
9 SCFXMI 331 457 2612 1.8416759028349E+04 18f

-Ta- GROW 141 301 2633 -4.77878118147i2E-07 8f
11 SCSD1 78 7 3148 8.6666666743334E+00 23f
12 STAIR 357 467 3857 -2.512669511900E402 11
13 SCRS8 491 1169 4029 9.0429695380079E402 22f
14 PILOT4 411 1000 5145 -2.5810162253381E+03 I1f
15 SCFXM2 661 914 5229 3.6660261564999E+04 19f

-16- GROW15 301 64 3 5665 -1.0687094129358E+08 9f
17 SCSD6 148 1350 5666 5.0500000078262E+01 24f
18 SCFXM3 991 1371 7846 5.4901254549751E+04 20f
19 SCTAP2 10911 188 8124 1.724807142857 E+03 -27f
20 GROW22 441 94 8318 -1.6083433648256E+08 10f
21 SCTAP3 148T 241 10734 1.4240000000000E+03 28f w

22 SCSD8 398 27 11334 9.0499999992540E+02 25f

Table 4.3: Test problem dimensions.

,I.2. TESTING 8O

problems was created from an example in [Chv83J and documented in [EntSS). It

was originally intended for debugging purposes. The optimal objective values for tile

p~roblems as reported by Gay (excluding the DIET series) are included in the table.

Problem Prob Name Nor Min max Min Max Min Max
Number / # Subs Sleps Rows Rows Cols CoNs Couple Couple

1 '1 fTT 2 3 0 o i
2 DIET3/3 3 2 3 6 1 I
3 DIET'7/ 7 - 3 6 6 I_ 14 : 205fl 1 1 15 11 I T -4 5 D"
5 SCAGR7f7 7 9 26 13 27 6
6 SCORPION6 6 34 93 51 66 27 49
7 SCAGR2/25 25 19 2 13 27 7
8 SCTAPI/10 10 30 30 48 4S 18 Is
9 SCFXM1/4 4 66 92 99 126 5
10 U- WT// 7 20 M 43 43 --- -- T
I I SCSD1I3 3 20 37 190 380 10 10
12 STAIPJ6 6 38 103 71 96 46 51
13 'SCRS7f " 14 T3 '67 3 - 440 10 1t

14 PILOT4 4 61 154 248 25? 133 154
is SCFXM2/8 8 66 92 99 126 5

- 6 GROWI =/I5 1 2 T20 43 43 20
17 SCSD6/6 7 20 2-10 190 210 10 1
18 SCFXM3/12 12 66 92 99 126 5
19 SUIAP2/10 1 109 10V) 181 -1 - 62 -L

20 GROW222 22 20 20 43 43 20 20
21 S ITA P310 O 24i 86
22 SCSD8P 39 10 17 7 9(_ 10 1

Table ,I.: 'rest problem step dimensions.

Table ,1.4 contains the staircase dimensions for each of the test problems. The

default number of subproblems created is listed along with the number of steps in

the staircase. The minimnum and maximum dimensions of each step are given, along

with the coupling between adjacent steps as described earlier in Figure .1.1.

4.2.3 Test Designs and Results

The physical properties power, work and time are excellent terms to describe the

performance of a parallel algorithm. In the computing environment, tile unit of

power is a CPU, the unit of work is a CPU second, and the unit of time a second
as measured with a wal! clock. One can view work, or CPU time, as the rent paid

90 CHAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGR.AMS

for use of the computer. The absolute performance measure, however, is usually the

elapsed timec needed to obtain a solution.

I tNOS U..O/ 0 DC MPA1 DECO N P/3 [] DCM 11

C 3 -
P 3

P 2,

0w
• l
eI.r

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Test Problems

Figure ,.3: Used CPU power for each test problem.

Power: A good parallel algorithm has two properties. First, it makes efficient use

of the CPU power. \Vhen two CPUs are made available, both are actually used. Most

algorithms do not achieve perfect efficiency Eighty percent is often considered very

good. Figure 1.3 displays the average CPU power applied to solve each test problem

when decomposed into the default number of subproblems given in Table ,.4. It shows

that algorithm has littlo, trouble utilizing more CPU power, especially oi the larger

problems. Of course there is a limit. Remember that at most N - I processors can

be kept busy by the algorithm, where N is the number of nodes/subproblems. These

experiments were run with at most four CPUs because although the 3090/600E has

six, it cannot effectivel: 7 offer more than four CPUs in a multi-user environment.

There are no decomposition results for problems SCAGP25, STAIR and PILOT4

because dual-degeneracy prevented progress and a primal feasible solution was not

obtained.

4.2. TESTING 91

Notice also that the used CPU power for problem SC205 is at or near one regardless

of p, bccausc in this case the computcr spends most of its time obtaining a primal

feasible solution. At the time of writing, the Phse I algorithm is serial, and or.!y one

CPU is used despite the availability of more. In fact SC205 has a vacuous objective

row for all but the first step in the staircase. As soon as a feasible point is found, it is

the optimal one. The Phase 1 algorithm could be made parallel l)y passing infeasible

primal solutions to the right, but this has not yet been done.

I 2 3 ... P Ptocsor loikes

T tead Doda

! Form -i.

P Wogk do-t - ally

U Wixk In patalld
d

D PwOCCisor ta~n&
T
i Proctu Subsm

I_ __Owftry (Eqaaixiffm)

rdt Saution

Figure -1.4: Strings of work.

Useful Work and Idle Time: Figure 4.4 will help us understand how the data

for Figure 4.3 and all subsequent figures were collected. The solid lines in the figure

represent uscful serial work doing input and output. These times are ignored. The

only times reported are those for the parallel l)hase, which rcprescnts a majority of

the work done, especially for large problems.

After data is read from disk, the work fans out to p independent strings of work

with one barrier between the Form Subs and Process Subs steps. The parallel lines in

Figure 3.1 are shaded grey with intermittent white sections. This is to represent useful

and idle work time. Useful work is spent forming and solving subproblems, whereas

92 CHAPTER 4. RESUI'TS FOR S'AIRCASE LINEAR PROGRAMS

idle work is spent counting. In the multi-user environment on the IBM 3090/600E,

it is important to "waste time" counting because we must know how much idle time

is really being used. It must be measured somehow. A production code would not

do this. Idle time would be filled with useful work from other user's jobs. Counting

idle time degrades performance at the expense of simulating a "generic" computing

elvi rolmlcnt.

The CPU power in Figure 4.3 is the ratio of useful work (total length of all the

grey lines) to the total work (total length of the grey and white lines). It is a measure

of the effective CPU power applied to solving the problem.

A second aspect of collecting CPU times needs to be reported. Each parallel

string of work is implemented as a series of MVS operating system tasks, the number

of which is not predetermined. Partly because of this, the IBM Parallel Fortran

Compiler has no facility for collecting individual CPU times. An assembler language

routine for collecting MVS task times was used instead.

On every call to the Parallel Fortran Library the MVS task may clange. This

has been likened to taking a sequence of taxis to travel to some destination. Street

intersections represent library calls. You never know when you will change taxis, so

to ensure payment, you make installments for each block driven. The time spent

crossing inters!ctions is not recorded. Likewise, the MVS task time is recorded be-

tween subroutine calls, but the time spent in the subroutine library is not recorded,

and causes a 10% to 15% shortfall in the total CPU time reported for the largest

test problem SCSDS; see Table,1.5. The unaccounted time falls into the idle-work

category because the library routines are called only when a processor is trying to find

something to do besides count. For this reason, the clocks on each Fortran Processor

are used to measure only useful work, while a job clock measures the total length of

all the parallel strings. The difference between the sum of the processor clocks ,mi

the job clock is attributed to idle work.

4.2. TESTING 93

Probkm Real My Percent
Name CPU CPU Error

SCSD8D- 15.32 14,106 8%
SCSD8/3 12.74 11.569 9%
SCSD8/4 12.78 11.587 9%
SC75. 9693 11'%
SCSD8/6 12.13 10.908 10%
SCSD8/7 10.72 9.471 12%SCSD8/8 13.58 12.31I2 9%
SCSD8N9 9.73 8.488 13%
SCSD8/10 10.97 9.708 12%

[SCSD8/13 1.59 10.288 11%
SCSD8/12 11.42 10.072 12%
SCSD8/13 10.89 9.575 12%
SCSD8/14 10.71 9.377 M2

SCSD8/39 31.551 28.967 8%

Table -1.5: Shortfalls in measuring work.

Another set of runs were executed with and without the processor clocks, pro-

viding a very sensible illustration of the Heisenberg I'rinciple. You cannot mcasurc

pcrfornance uwithout affccling it.

Job CPU times are reported in Table '1.5. SCSDS was solved multiple times for

i = 11 and p = 1,4 both with and without the processor clocks. Two percent faster

times were obtained without the clocks when using only one processor, and four

percent slowcr times were obtained without the clocks when using four processors.

We can expect a similar effect for other test problems.

Two speculations have been offered to support the variations caused by alling

the clocks. The first is that part of the excess time is getting lost by the operating

system during the system clock calls [Wel89]. The other is that the operating system

is using the clock calls m opportunities to interrupt the processor [ForS9]. A system

interrupt would appear beneficial in that it would most likely be interrupting idle

work time.

Finally, we can see from Figure 4.5 that the total work required to solve a problem

is not deterministic. The same program configuration was run several times with

94 CHAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGRAMS

19.0

18.0
C
P 17.0
U

16.0
S
e 15.0
c
o 14.0
n
d 13.0

12.0

11.0 + -

1w 1w lw/olw/o 4w 4w 4w 4w 4w/o4w/o4w/o4w/o
With and Wilhout Clock Calls

(p=l,4)

Figure 4.5: The Heisenberg Principle.

different ri.sults. Ilencc, the reported times are the average of up to three successive

1Us.

Work: The second property of a good parallel algorithm is that the total work does

not increase as the number of processors increases. Figure 4.6 gives the total parallel

work (lone on each test problem using both MINOS and DECOMP (p = 1,2,3,4).

Notice that the work actually decreases from p = 1 to p = 2 for problem 13. This is

possible because there is no control over the path taken to the solution, and different

paths can be taken for different numbers of processors. The conclusion to be drawn

from these results is that the total work does not substantially increase as the number

of processors increases.

Time: Together with the effective use of CPU power, we obtain respectable reduc-

tions in elapsed times to solve the test problems, as shown in Figure 4.7. We have

used a log scale for this figure because of the great disparity in time required to solve

4.2. TESTING 95

N MINOS U DECOMpIi Dmpn 3 DECOmI 0 DECOMP/A

100.000

r 10.000

U
S 1.00

0100
' 0.1(0
0

I'

d 0.010
$

0.001
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Test Problems

Figure ,1.6: Work required to solve cach test problem.

0 MINOS U DECOMP/I N DECOMP2 [DECOMP/3 [DECOMP/4

100.000.

10.000
S
e
c 1.000
0

n
d 0.100
S

0.010

0.001
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Test Problems

Figure 4.7: Time required to solve each test problem.

96 JIIAPTER 4. RESULTS FOR STAIRCASE LINEAR PROGRAMS

the small and the large problems. A more effective presentation is made by normal-

izing the scale for each tes problem. In Figure 4.8, the times of each individual test

problem have been normalized by the time used by MINOS. The result is called the

"Speedup over MINOS." In this case, a value of 2 would mean that the decomposition

algorithm found the solution twice as fast as MINOS. The figure shows that parallel

decomposition is consistently better than the simplex method on the larger problems.

•MINOS []DECOMP/I E DECOMP12 13 DECOMP/3 [-3 DECOMP/4

S 100.00.

* y 10.00
d e
u r
P ' 1.00 . 0

F I
a N
C 0 0.10
t S

0
r 0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22
Test Problems

Figure 4.8: Speedup over MINOS for each test problem.

Speedups: There are two bencfits derived from parallel decomposition that give

such speedups. The first is that for the larger problems, decomposition alone (p = 1)

has offered a speedup. For instance, problem 21 (SCTAP3) is solved 10.5 times faster

just because of a change of algorithm.

The second benefit, naturally, is derived from using more CPU power. Figure 4.9

is a display of elapsed times that were normalized by the time used by DE(OOMP/1

for each test problem. With this perspective, we can effectively judge the benefits

of adding processors. Notice that for problem 21, the computation was sped up

by an additional factor of 1.6 over DECOMP/1 because of the addition of three

4.2. TESTING 97

MINOS U DECOMP! U DECOMP- [3 DECOMP/3 0 DECOMP/4

S o4
P V
e

d r

U D

P E 2

0 N1 I
t /

r 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Test Problems

Figure 4.9: Speedup over DECOMP/1 for each test problem.

OPUs of power for a total for four PUs. The overall benefit provided by parallel

decomposition with four processors was a factor of 16.8 speedup as seen in Figure 41.8.

The Number of Subproblems: This experiment dc-nonstrates the increase in

overhead of decomposition as the number of subproblems increases. The largest test
problem, SCSD8, has 39 steps. If subproblems are limited to a discrete number of

steps, the number of subproblems is limited to the set {2, 3,...,39). Note also that

there are 3S ways to partition the two-subproblem case. The number of steps per

subproblem was chosen to be nearly the same in each case.

Even though communication times are negligible, because this is a shared memory

computer, there is still a significant overhead involved in making the proper response

to all received messages. On the othei hand, there is an uncertain benefit from solving

a staircase with decomposition. These two effects combine in this experiment. Fig-

ure 4.10 shows the total work used to solve SCSD8 when the number of subproblems

N, varies between 2 and 38 (even numbers only), and the number of processors p,

varies from one to four.

9S CIIAPTER I. ISUI'S FOR STAIRCASE LINEAR IPR{OGRAMS

[DECOMP/IE DECOMP/2 03 DECOMP/3 E] DECOMP/4

C 35.01
PU30.0-n

25.0 -1
S 20.0
e
c 15.0
0
n 10.0
d 5.0

0.01
2 4 6 8 012141618 20 22 24 26 28 30 32 34 36 38

Number or Subproblems

Figure 4.10: Work to solve SCSD8 using increasingly finer partitions.

For small N, the total work remains relatively constant-around ten CPU seconds.

The run requiring the least amount of work is for N - 1, and p = I with 9.4 CPU

seconds. After the avcrage size of a subproblem begins to fall below three steps, N -

13, the total work increases. This is consistent with our general observations with one

CPU, that a staircase problem with less than 2000 nonzeros is not worth decomposing,

as the decomposition overhead begins to outweigh its benefits. However, with more

processors the results are different.

The run solving the fastest overall, as seen in Figure '4.11, is N = 10, 4 '1 with
3.4 elapsed seconds. For p = 2, the minimum is 5.8 elapsed seconds with N = 10 and

12, and for p = 3 the minimum is 3.7 elapsed seconds occurring at both N = 12.

The best speedup for a fixed number of subproblems is at N = 32, with a factor

of 4.7; see Figure 4.12. However, the best serial time versus the best parallel time is

8.7/3.4 = 2.6, but this was obtained only after an exhausting search.

The trend is consistent that more processors makes decomposi.ion faster. The

effect of the number of processors on solution time is likely to be a function of the

4.2. TESTING 99

25.0-

aIc
a c 15.01

s n 10.0
d s5.

2 4 6 8 1012 1416 1820 2224 2628 3032 3436 38
Number or Subproblems

Figure 41.11: 'rime versus the number or subproblems for SCSI)S

DECOMP/1 U DECOMP2E DECOMPI3 C DECOMP/4

S 5.0
p n

e e 4.0
d p
u, r 3.0
p 0

c 2.0

V S 10

e s

r 2 4 6 8 10 121416 1820 2224 2628 303234 36 38
Number of Subproblems

Figure 41.12: Speedup versus the numnber of subproblems for SCSD8.

100 CHAPTER 4. RESULTS FOR STAIRCASi LINEAR PROGRAMS

solver more than anything else. Small LP subproblems are best solved with a vector-

ized tableau method. Specialized subproblems like network flows are best solved by

combinatoric algorithms. MINOS, the solver used here, performs best on mcdiuln-

sized staircase problems (relative to decomposition). Serial solvers should be choscn

according to the size and nature of the subproblems.

The Numiber of Processors: This is a study on the effective use of processors.

At a time when the computer was lightly loaded, SCSDS was solved using from one to

seven Fortran Processors. In IBM Parallel Fortran, a Fortran Processor is a series of

MVS Operating System tasks, so more than six may be requested for a six-processor

machine. Seven is the limit based on memory restrictions.

I Work El Times

40"

35-
S 30"
C 25"

o 20"
n 15-
d 10 .
S

5-

1 2 3 4 5 6 7
Processors

Figure 4.13: Work a,,d time versus processors for SCSDS.

Figure ,1.13 is a classic speedup diagram for this problem. Ilere, speedup is calcu-

lated relative to the solution time for decomposition with one processor. Naturally,

the point (1,1) is represented. The diagonal line shows the ideal.

The next figure, 4.11, graphs the dichotomy of Work versus Time for varying

numbers of processors. Sharp dips in the amount of work, as for the six-processor

4.2. TESTING I01

Linear CPU Power

7
6
5

4

3

2
1

0,
0 1 2 3 4 5 6 7

Processors

Figure 4.14: Power versus processors for SCSDS.

case, can only be attributed to good fortune. Experiments on a dedicated machine

could settle many uncertainties as to the true benefactors of parallel decomposition.

At this writing, we can say only that they exist.

4.2.4 Performance Extrapolations

flow will parallel decomposition perform on laiger problems?

In the next two experiments, we reexamine the results for a constant number of

subproblems by grouping the test problems by family. We consider, as the problems

in a family get larger, how parallel decomposition should perform on even larger

problems.

Extending the Staircase: This is the first of two discussions regarding extrap-

olation of the results beyond the test suite. One way to make a staircase problem

larger is to add more steps. This means that either the planning horizon is length-

ened or it is represented in finer detail. There are three such series in our test suite:

102 C1AIPTER 4. itESUIS FOR STAJICASE LINEA R PROGRA MS

0 Nos 0 DECOM~r- C3 D-'ONIP/ 3 Dr-CON111/

o
3-

P
e
e
d r 2-

U D

P i.
PC
a0 1

C P

01
r

GROWl GROWl5 GROW22 SCSDI SCSD6 SCSDS

Test Problems

Figure ,1.15: Speedup over DECOMIP/1 for extending staircases.

DIET, GROW, and SCSD. The speedup results from Figure ,t.9 are reproduced in

Figure 4.15 for the latter two only, since the LPs of the DIET series are too small. We

see that as the length of the staircase extends, the parallel algorithm's performance

is not degraded.

Model Complexity: Another method of increasing the size of staircase problems

is to add more complexity to the model,i.e., to disaggregate. For instance, "dairy

products" becomes milk, cheese, yogurt and ice cream. Adding complexity allows a

model to give a more detailed solution, and the modeler to address interactions more

specifically. A summer rise in the price of the aggregate "dairy products" may only

be a reflection of more demand for ice cream!

The SOTAP series of problems keep the same number of steps, but increase the

number of rows, coi'xmns and nonzeros per step. Figure 4.16 is a reproduction of

the elapsed times for this series. It shows that the simplex method has increasing

difficulty with this problem, while the performance of the parallel decomposition

algorithm does not degrade.

4.3. CONCLUSIONS 103

N * MNOS U DECOMPIZ 0 DECOMPV3 C3 DECOMP/4

S
P

t, 2.

dr
D

F C I.
0

C P
tI
0 1
r

0
SCTAPI SCTAP2 SCTAP3

Tes Probklms

Figure ,1.16: Speedup uver DECOMP/1 for more complex staircases.

4.3 Conclusions

We have taken a long tour through the space of all communication networks, but

the experience has created surgeons from interns. What we sllcc apart is more than

just a linear program. It is a modeler's presentation of some small part of the world.

The pieces and their interactions can now be observed from a new perspective: as a

network of communicating entities. The communication is structured and dircctcd

toward obtaining a consensus via local agreements. How can communication patterns

be studied? Are their optimal configurations based on a modeler's knowledge of the

natural configurat ,n? What are the strong and the weak links? These are probing

questions to answer with further investigation.

The main conclusion to make about the computational results is that if serial de-

composition does well on a given problem then parallel decomposition does also. This

is not surprising, but what we have also seen is that even when serial decomposition

is slow, parallel decomposition can still be made to solve proolems faster than the

104 CIIAPTI'ER.. RISUtLTS FrOlt ST'A IRCASE INEARI PIROGRAMS

simplex method by adding more processors. InI geIera!, adding more processorm will

help, but there is a limit.

An important accomplishment is that by characterizing the oracle ald the relaxed

oracle, we define an interface that allows any convenient subproblem solver to be used.

The essential part of decompositiont is not ho, a subproblem is solved, but the form

of its solution.

In addition, we can now see that the subproblems need not he linear progrhms.

Convex functions and regions can be approximated with piece-wise lincar functions

and extreme-point rmpresutations.

Finally, no practical implementation of a theoretical algorithm is perfect. Ours

needs work to make it more robust and handle ever larger problems. Let it be oor

hope that tie techniques and ideas discussed here will find practical use.

Appendix A

Example Subproblem

Formulations

We now present examples of decomposition applied to three structured linear pro-

grams, and one that is unstructured. These are intended to offer a better understand-

ing of the previous sections, and serve as recommended procedures for applying the

concepts of this thesis to practical examples.

Block Diagonal: This is the simplest example for decomposition. The problem

consists of two completely independent linear programs contained in one. By

investigating the formulations of the subproblems, we find that decomposition

can impose dependencies not regularly recognized in practice.

Staircase: Here we take a siaircase pattern and slice it vertically just as in the dia-

gram in the introduction of this thesis. In the final chapter, we apply the parallel

oracle to the resulting subproblems for a variety of real-world test problems.

Two-Stage Stochastic: This is our first example of cross nesting. Again, the dia-

gram in the introduction contains the anatomy and the sequence of slices used.

Dense: This nondescript structure is used to demonstrate a procedure by which the

anatomic structure is broken down to the level of a single coefficient.

105

106 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIO;S

These cxamle don not make use of hte subproblem interface theorem, so for instance

a vertical arc index set is defined on the intersection of the row index sets of the

joincd nodes.

A.1 Block Diagonal Example

We begin our series of examples with the simplest block diagonal case, where the

constraints of two subproblems lie in independent spaces. The subproblems are com-

pletely independent, except that they are coupled via the objective, indexed by a. In

this example there will be information passed between the subproblems, but only of

the most trivial nature.

min zI + cz=2
X'>O

s.t- wl AlY' .b,,(A

V= : A22Z >_P.

As noted earlier, the names of the primal and dual variables of the Block Diagonal

Problem are used as indices for the rows and columns of the coefficient matrix A.

The block diagonal LP (A.I)) ha superscripts in order to differentiate the problem

data and variables from those of the subproblems, which will have subscripts.

Block Diagonal Problem Description:

"=,=r'ux 2, C zUx2 ,

(Al0 A222=)0EAR2 xc b= b2)E 9 , cT= (c' c2) E 3 xc .

Block Diagonal Communication Network Description:

(A(,A)= Q{1,2), {(12), (21)))
R", = 72 = 7 ,

C,=x I Ux2, C2 =XIUx 2,

2= down, 1, =up.

L. BLOCK D!AGONAL EXAMPLE 107

Block Diagonal Incidence Grapli Description:

h = I S1:, 1' , X" =), ((ax'), (ax), (703), (WY=), WS), (lr'z"))).

Recall that t and s index the objective and right-hand side, respectively.

Block Diagonal Arc Index Sets: There arc no horizontal arcs, so C12 C21 = X2.

Block Diagonal Partition Graphs: There is only one partition graph, so all

added variables will be indexed by their associated arcs. p = (A',A), 7 = R,

C,= C.

Block Diagonal Subproblem (1 E K/): Node one is topmost and leftmost.

Original Variables: -91 E R' and xi E R".

Origina! Data: A =(A" 0), b, = (b), and cr= (cl c2).

Incoming Arcs: There is one incoming arc to node one, (21), and it has type

T = up. It determines the added variables and data.

Added Variables: 121 E RK'2 021 E R, and 021 E RC21.

Added Data: 1 is indexed by (021, s), 12 is indexed by (621, 121), kl2 is indexed

by (21,12,), and -I12 is indexed by (0 21,X,).

Non-negativity: 12, > 0 and z is free.

Constraint Types: 7r, is a >, 021 is an =, and 021 is an

108 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Formulation (1 e At):

121 X:1

021 -k)2 -112 [
021 I

0 free

Notice in the formulation for node I that for the dual variables, 21 = c' because of a

dual identity with the objective row. This means that the information being passed
to node 2 is constant and equals the values of the original objective for the columns
X1.

Block Diagonal Subproblem (2 E K): Node two is leftmnost and not topmost.

Original Variables: 7r2 7 2 and X2 E KWc2
.

Original Data: A2 =(0 A22), b2 = (b2), C4=(0 0).

Incoming Arcs: There is one incoming arc (12), of type T12 = down.

Added Variables: w12 E R and V12 E R.

Added Data: 021 is indexed by (U12, X2), 021 is indexed by (U12,s), 621 is indexed

by (u12 , W12), and another 6, is indexed by (o2,W12).

Non-negativity: X2 1 0, and w12 is free.

Constraint Types: v 12 is > and 7r2 is >.

A.2. STAIRCASE EXAMPLE 109

Forr" !ation (2 E V):

:12 W12 3 2

ir2 IA2 I

>:0 frce

a2[0732

The node 2 sulproblem will be solved only once based on the constant information

passed to it from node 1. The returned primal solution, when incorporated into k,2

and §12 in the node-I subproblem, will allow it to be solved in only one iteration. The

overall optimum is then achieved. The overall solution is ((i).

A.2 Staircase Example

This example differs from the previous in that it uses Benders Decomposition and

there are now coupling constraints between the partitioned columns. As a result, the

information passed over the communication network will not be so trivial.

min cIzI + c2.V2 = zzS>O

Ix2: A21z1 + A22 2 > b2.

As in the previous example, the names of the primal and dual variables of the Staircase

Problem are used as indices for the rows and columns of the matrix A.

Staircase Problem Description:

= I U 7r2, C= I UX 2,

A 21 A22 E -b2 b) E cT=(c' E lxC.

110 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Staircase Communication Network Description:

(.A,.4) = ({1,2), {(12),(21)))
R, =W XI U K2 IR 2 I " U 1 21

C" =z (2 ""X2 1

T12 = right, T1 = left.

Staircase Incidence Graph Description:

h = ({or, , , I 2 , S X} 2){(ax'), (ax2), (0s), (xY-'), (7r 2), (r2 '), (2 2)}).

Staircase Arc Index Sets: There are no column coupling sets since there are no

vertical arcs. IZ12 = Z21 = r2

Staircase Partition Graphs: There is only one partition graph, so all added

variables will be indexed by their associated arcs. p = (A', A), "pZ = "7, and C. = C.

Staircase Subproblem (1 E A): Node one is topmost and lcftmost.

Original Variables: wr E R', and xZ in :1.

Original Data: A,= Al l b1 = b(,andcT=(c 1).

Incoming Arcs: There is one incoming arc to node one and its type is T1 = left.

Added Variables: A21 E RK2 1 t21 E R, and Y21 E 3R21.

Added Data: 1 is indexed by (a1, t21), j12 is indexed by (A21, t21), 1112 is indexed

by (A21,Y 21), and -112 is indexed by (r1 ,y21).

Non-negativity: x, > 0, and both Y21 and t2 are free.

Constraint Types: A21 is > and r, is

A.2. STAIRCASE EXAMPLE 111

Formulation (1 E A):

X1 Y21 121 31

_.0 free free

0,1 1T 0 1

Staircase Subproblem (2 E A): Node two is topmost and not leftmost.

Original Variables: W2 E 3Z"2 and z2 E Wc2.(0) (0=0)adc ()
Original Data: A2 = A22,= 0 andc4- c).

Incoming Arcs: There is one arc (12) incident to node one and its type is

T2 = right.

Added Variables: w12 E R, and U12 E R.

Added Data: g2l is indexed by (W2,u1 2), -i2l is indexed by (0'2,ul 2), d21 is

indexed by (w12,u12), and another j 21 is indexed by (W12, 32).

Non-negativity: u12 _ 0 and X2 > 0.

Constraint Types: T2 is >, W12 is = 1.

Formulation (2 E N):

U12 X2 32

72 P2> A2 >0
OW12 d21 ~

>o >o0

112 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

A.3 Two-Stage Stochastic Example

Consider b2 in (A.3) to be a discrete random variable having realizations b and

probabilities P. for all s E {1,... S}. We will derive the subproblems for this multi-

point distribution.
rin cIx 1 + c2x2 =:
z' >0Z3 5o 2 l(A.3)
s.t. 7rl : Al x _ b ,

.2 : A2 zI + A22z 2 > b2.

Stochastic Problem Description: For a multi-point distribution, the indices W

and x2 will be repeated for each instance of s. However, it is a modeling issue as to

whether 7r1 is repeated. The meaning of these constraints becomes ambiguous whcn

randcom data are introduced. If we limit ourselves to linear formulations, we still have

the choice to model them either as a single expected-value constraint, E,{A 2 'z1 > bli

or as multiple absolute constraints A21x,2 > bl , for all s.

Given the a priori assumption to keep the objective linear by using expected
values, the second case corresponds to Stochastic Linear Recourse. To keep things

simple we choose the expected-value constraint.

2 luxC
TZ7~=r, U ' C x'U~

A= (A2 1 A 3e , bXC b b E r=(c' c,) E xc,

\A 21 A22)

P5
2 -sA' 2, c2 p, c2.

Stochastic Communication Network Description: This example crosses D-W

and Benders Decomposition. First D-W is applied, then Benders is applied to the

bottom problem. This obviates the need for the special Gross-Splitting described

A.3. TWO-STAGE STOCIIASTIC EXAMPLE 113

previously. The communication network is defined for all s E (1,... S).

(MA)= ({1,2,,{(12),(21),((,(2))),r Z2= VE 1, -,S}, "R,= r.2,2
7C, = U,. X'2, =x E' (1.,) 2=X' .X2

T = down, T21 = up, T, = down, T = up, T2, = right, T 2 - left.

In addition to nodes one and two, this network has one node for each distribution

point. Each communicates to node 1 via up and down arcs, and with node 2 via left

and right arcs.

Stochastic Incidence Graph Description: Note that the nodes for 7r2 and z,

are repeated for cad instance of s.
&XI{(G),(2),(),('z I 2), (7r)I ,),-. 2)}).((, T.)S),),I.), '

Stochastic Arc Index Sets: Nodes 1 and 2 communicate only objective informa-

tion as we saw previously in the Block Diagonal Example.

12. = 1"Z,2 = r, C12 1 1 = X

Stochastic Partition Graphs: There are two partition graphs p, and P2. They

are ordered so that P, is before (i.e., the parent of) p2.

Pi ({1,2,s),{(12),(21),(ls),(sl)}), 74,, = 7?, Cp, =C,

P2=((2,,},{(2s),(,,2)}), R72=,-r., C,=C.

The added variables associated with arcs (21) and (sl), which link the child partition

nodes {2, s) to the parent partition node {1}, will be indexed by the child partition

P2.

Stochastic Subproblem (1 E .f): Node one is topmost and leftmost.

114 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Original Variables: irl E R', and z E WC.

Original Data: A, "" (0 A.2), b, = (b'), and cT (c c,).

Incoming Arcs: Node one has S + I incoming arcs (21) and (sl) and their

types are T21 =up and T, =up for all s {1,... ,S}. They all connect the partition

graphs p, and p2 .

Added Variables: I., E R 0,2 E R, 021 E KR c , and Oil E W-". The sources

of the incoming arcs are in p2. Therefore, I and 0 are subscripted by p2.

Added Data: 1 is indexed by (,,.9 , is indexed by (O,.,1,), kl 2 is indexed

by (02, lp,), k . is indexed by (0.11,p,), -12 is indexed by (4021,xl), and -I,, is

indexed by (0,t,,xi) for all s E {1,... ,S). Note that § is subscripted by p2.

Non-negativity: 121 _ 0, 151 >_ 0 and z is free.

Constraint Types: 7r is >, b21 is =, 0b, is =, and 0., is

Formulation (1 E .'): This is a D-W Master problem to the implicit subprob-

lem defined on P2. It incorporates new columns in a synchronous manner based on a

p2-feasible point for a given value of (b1,b').

12 X1 Sl

7rl A, _ b
021 2 -112 0_

Oil -s 0 Vs E i {1,...,S),

o2 I -2

>:0 free

41 F o W

A.3. TWO-STAGE STOCHASTIC EXAMPLE 115

Stochastic Subproblem (2 E K): Node 2 is leftmost and not topmost.

Original Variables: Ir2 E 02 and x 2 E C2 .

Original Data: A2 = (A 12), b2 = (b2), and 4= (0).

Incoming Arcs: There are S + 1 arcs entering node two and their types are

T2 = down and , 2 = left. They all lie within p2.

Added Variables: w 12 E R, V12 E R, A,2 E RK,I t, 2 E R, and Y,2 E RX.2

Added Data: 421 is indexed by (v12,x 2), -021 is indexed by (v12,s), 321 is

indexed by (v12, w12), another 62, is indexed by (a 2, W12), 1 is indexed by (O!2 , 2), 52s

is indexed by (A,2, 42), f12, is indexed by (A,2, ,.2), and -12, is indexed by (r2,Y, 2).

Non-negativity: .2 > 0, and y,2, W12, and t 2 are free.

VConstraint Types: A,2 is >, V12 is >, and 7r2 is

Formulation (2 E K): This is a Benders Master program to the subproblems

defined over s. Each subproblem adds constraints independently of the others.

X2 Y/s2 W12 42 S2

A,.2 , i2, >
V12 621 41

7r2 A2 _I2,

> 0 free fre e fre

o2 0 0 21 1

116 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Stochastic Subproblem (s E N): Node s is neither topmost nor leftmost.

Original Variables: r. E S and z E R.

Original Data: A, = (A 2 2), bo = (0), and cT= (0).

Incoming Arcs: Node s has two entering arcs (is) and (2s) with types T. =

down, T2 = right.

Added Variables: wi, E K, v1, E *, w2, E R, and U2. E R.

Added Data: & is indexed by (vlo,x,), -1 is indexed by (vl°,s.), So. is

indexed by (v1jWjo), S., is indexed by (ao,w 1 ,), 9,2 is indexed by (ro, u2,), -1, 2

is indexed by (',, U2), d 2 is indexed by (W18 , U2.), and another 42 is indexed by

(W181 3s).

Non-negativity: U2 _ 0, z _ 0, and wl, is free.

Constraint Types: vj, is >, 1r, is >, and w2, is

Formulation (s E At):

112s X, Wio 3S

Ts 9&.2 As

_>0 > 0 freeo. F .is o 167s,

A.4. DENSE EXAMPLE 117

A.4 Dense Example

This final cxample demonstrates cross splitting on a dense matrix. The communi-

cation network has five nodes, one of which has an empty row index set. This is

a trick by whicl we can apply the cross splitting technique to the extent that each

subproblcm is based on , single coefficient of the constraint matrix. Our starting

formulation is
min C IXI + c2x2 =
Xr, >0M250_-2o (A.,4)
s.t. r : A='Y + A'2x2 > bi,

72 : A21tX + A22 2 > b2.

Dense Problem Description:

7Z= rxu r2, C=XI uz 2,

AA , G. x c b= E R , Cr= (c') ' .

Dense Communication Network Description:

At = ({1,2,3,4,5},

A = {(12),(21),(13),(31),(14),(41),(15),(51),(23),(32),(45),(5,1)))
"I=0, 7Z2 =7r l, 7Z3=7r, 7?= r2) ZS= r2,
C1=zUX2 , C2=X1 , , =x 2, C4 = C5=- 2 ,

T = T3 = T 4 = Ti = down, T1 T= T =T T up,

723 = T45 = right, T32 = T4 = left.

Dense Incidence Graph Description:

h = { , , ,,,,X2), & (X),(aX2), (11s), (7,rX),(Or IV), (7r2S), (7 1), (7r2X2))).

Dense Arc Index Sets:

R 23 R32 = 7r 5 = 5 =75"-r 2

C12= C21 = , C13 C31=z 2, C14= C41= X Cs = C51= X.

118 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Dense Partition Graphs: There are three partition graphs pl, p2, and p3 in the

communication network of this example. As determined by the ordering of the nodes,

p, is the parent to both P2 and p3:

A = ((1,2,3,4,5), (12), (21), (13), (31), (1,1), (41), (15), (51))),

7?,, = ?, c,, = C,

P2 = (2,31, {(23),(32))), R" = 70, C. = C,

13= ({4,.5),{f(45)1(54))), Rp = 7r', c.3 = C.

Therefore, the added variables associated with arcs (21), (31), (41), and (51), which

link the child partition nodes {2,3,4,5) to the parent partition node {1), will be

indexed by child partitions, namely p2 and P3.

Dense Subproblem (1 E K'): Node one is topmost and leftmost.

Original Variables: z E RC' since the row index set for node one is empty.

Original Data: cT= (c' c2).

Incoming Arcs: Node one has four entering arcs with sources in two different

child partitions. Arcs (21) and (31) are from P2 and arcs (41) and (51) are from p3.

Their types are T12 = T13 = T14 = TIs = up.

Added Variables: #21 E VC32 , 031 E 3, 041 E R:1, 0,5 E V$1 0 2 E R,

0,2 E R, !p. E R"P2, and 1P3 E RK, 3

Added Data: 1 is indexed by (0,sl), 1 is indexed by (Op.,s), §, is indexed

by (02,lp,), §p is indexed by (0,, 1p3), X 1 2 is indexed by (0P2171,2), 13 is indexed

by (031, 12), Xf4 is indexed by (041,lp,), X's is indexed by (51,1p,), -I12 is indexed

by (2 1,,xl), -I3 is indexed by (0 3 1, X1), -114 is indexed by (041, x), and -15 is

indexed by (0,51, x).

A.4. DENSE EXAALE 119

Non-negativity: I, _ 0, Ip, >_ 0, and x, is free.

Constraint Types: 021, 'P311 4 t, 10s4 , 0, , and 0, arc all equalities.

Formulation (I E At):

0 21 A12 -112 = 0

031 -A3 113 0

041 A1l4 = 0
S; ' 1is 0l

>0 >0 free
0l1 0 -10 c1

Dense Subproblem (2 E K'): Node two is leftinost and not topmost.

Original Variables: V2 E r2 and X2 E R' 2.

Original Data: A2 =(All), b2 = (b), and 4= (0).

Incoming Arcs: There are two arcs entering this node, (12) and (32), and their
types are T1 = down, T32 = left. Arc (12) spans pi and P2 but it is down so no
explicit synchronization is necessary.

Added Variables: A32 E R1'3, U1 2 E R, Y32 E 3R32 , w12 E R, and 32 E R

Added Data: &2 is indexed by (v 2,x2), -j2l is indexed by (V12,s2), 621 is
indexed by (v,2, w12), 621 is indexed by (2, W12), another 1 is indexed by kG2, 62), 723

is indexed by (A32,i32), 1123 is indexed by (A32,1Y32), and -123 is indexed by (-2,y32).

120 APPENDIX A. EXAMPLE SUBPROBLEM FORMULATIONS

Non-negativity: X2, Y32, wt12, and 132 are all free.

Constraint Types: A32 is >_, V12 is >, and 7r2 i.

Formulation (2 E K):

X2 Y32 tI2 32 32

A32 1123 i~23 0

t)12 21 21 > -2

w2 A2 -23

fre free free frce

a2 10 10 F8217 1

Dense Subproblem (3 E K'): Node three is neither leftmost nor topmost.

Original Variables: V3 E R" and x3 E

Original Data: A3 = (/A12), b3 = (0), and cl'= (0).

Incoming Arcs: There are two incoming arcs to node three, (13) and (23), and

their types are T13 = down and T23 = right.

Added Variables: v13 E 3, W23 E R, u23 E R, and w13 E R.

Added Data: 4'a is indexed by (v, 3,x3), -031 is indexed by (v13, 3), 631 is

indexed by (v13,w13), 31 is indexed by (a3,w13), ,32 is indexed by (73,1123), -4r,

is indexed by (a,3 1u23), j32 is indexed by (w23,u23), and another j 32 is indexed by

(P232 S3).

Non-negativity: 123 _> 0 x3 is free, and to13 is free.

Constraint Types: v13 is >, .3 is >, and W23 is

A.,4. DENSE EXAMPLE 121

Formulation (3 E A):

U23 X3 W13 33

T3 g32 A3 > 0
W23 =32

> 0 free f a

0'3 4t 32 0 131,

Dense Subproblem (4 E A): Sinilar to node two, this node is leftmost and not

topmost.

Original Variables: 7r4 E 9F 4, x, E Rc.

Original Data: A = (A 1), b4 (P), and cT= (0).

Incoming Arcs: There are two arcs entering node four, and their types are

T14 = down and 'T4 = left.

Added Variables: A54 E RK-N V14 E 3, ys4 E 2Rr ", w, E R, and t54 E R.

Added Data: b41 is indexed by (v14,X4), 4O41 is indexed by (v1 ,s4), 3, is

indexed by (v14, w14), 641 is indexed by (4, w14), another 1 is indexed by (a4, 4s4), 43

is indexed by (AS4, t 4), fI43 is indexed by (A 4, Ys4), and -I43 is indexed by (7r4,y5).

Non-negativity: z4 >_ 0, and Y54, W14, and t5 are free.

Constraint Types: A54 is >, v14 is >, and 7r4 is

122 APPENDIX A. EXAMPLE SUBPROBLEAt FORMULATIONS

Formulation (4 E Af):

X4 Ys4 W14 i 4 34

V14 145 *14 > 0l

-x4 A4 -145 b

>: 0 free frt e free

o04 0 0 F T ,4 1

Dense Subproblem (5 E N): Similar to node three, node five is neither topmost

nor leftimost.

Original Variables: 7rs E Rs and xs E Rs.

Original Data: As = (A'2), bs = (0), and cT= (0).

Incoming Arcs: There are two incoming arcs to node three, (15) and (45), and

their types are T1s = down and T45 = right.

Added Variables: vis E R, w45 E R, U14s E R, and wls E R.

Added Data: &sj is indexed by (v1s,xs), -s, is indexed by (vjs,ss), 3s is

indexed by (v15, w1s), 3s, is indexed by (95,4Wls), is indexed by (7rs,U 45), 454

is indexed by (as,u4s), ds4 is indexed by (w45,U 4 5), and another d54 is indexed by

(W45, .55).

Non-negativity: u4. > 0 x:s >_ 0, and wl5 is free.

Constraint Types: v1, is _, rs is >, and w4 s is

A.4. DENSE EXAMPLE 123

Formulation (5 E AC):

U45 Z5 Wi$ 35

Irs Y34 As -I

5 _0frJ
>0 >:0 frce

Us t32 0 31

Appendix B

The Test Problems

For each problem from the test suite, we have produced a bitmap pattern of the

nonzcroes in the constraint matrix. The application called SparseDisplay was used

with the consent of its creator Irv Lustig.

The three DIET problems were created by the author from an example in Chlvital

(Chv83]. They are used primarily for test purposes and are quite small and dense.

The ,cxt group of problems are from the standard netlib set.

GROW7, GROW15, and GROW22 are of unknown nature and origin.

STAIR is also known as DINAMCO, and is an economic model of Mexico due to

Alan Manne [Man??]. A&

PILOT4 is an early version of a U.S. energy economic model by George Dantzig and

Vesley Winkler.

Finally, the next last group of test problems was first documented in [HL81a], and

their descriptions are paraphrased here. Further references are available in the cited

publication.

SC205 is an dynamic multisector development planning model.

SCAGR7 and SCAGR25 are an two versions (respectively 7-period and 25-period)

of a large dairy farm expansion planning model.

124

125

SCRS8 is a technological assessment model for the transition from fossil to renewable

encrgy resources in the U.S.

SCORPION is a dynamic energy flow model developed for the oil sector of France.

SCSD1, SCSD6, and SCSD8 arc sample problems in the minimal weight design

of multistage trusses under a single loading condition.

SCFXM1, SCFXM2, and SCFXM3 are a production schcduling model (origin

unknown).

SCTAP1, SCTAP2, and SCTAP3 are problems in the optimization of dynamic

traffic flow where congestion is modelled explicitly in the flow equations.

Figure B.1: Bitmap of DIE-T2 (magnification =2M

Figure B.2: Bitmap of DIE T3 (magnification =i-0)'

Figure B.3: Bitmap of DIET7 (magnification = 2).

126 APPENDIX B. TlE TEST PROBLEMS

Figure BA4: Bitmap of SC205 (magnification I= j0).

hl.w.

Figure B.5: Bitmap of SGAG1I7 (magnification

127

"i~\

:"1, '

Figure B.6: Bitmap of SCORPION (magnification =')1

% 10005*

128 APPENDIX B. TIlE TEST PROBLEMS

%.b

Figure B.7: Bitmap of SCAGR25 (magnification =

..,.. .=.!::::

Figure B.8: Bitmap of SCTAP1 (magnification -MO)_.
1000°

129

.. P I

sw-* I. *.s. ~ e

.. :

Figure B.9: Bitmap of SCFXMI (magnification
I000),

Figure B.10: Bitmap of GROW7 (magnification=")'

J...3... .

130 4PPENDIX B. TIE TEST PROBLEMS

Figure B.11: Bit:nap of SCSDI (magnification = 0-)"

PAlt

Figure B.12: Bitmap of STAIR (magnification = Iw

131

...... .."S,

~~.).

(-,,

~\ .. \\

Figue B.4: Btmapof PLOT (magifiain J'S %%).

132 APPENDIX B. TIE TEST PROBLEMS

Figure B.15: Bitmap of SOFXM2 (magnification -

Figure B.16: Bitmap of GROW15 (magnification-so

ItOD

Figure B.17: Bitmap of SOSD6 (magnification =

Figue B.6: itma of RO~S (mgni~caton1=000

133

Figure B.18: Bitmap of SCFXM3 (magnification= o

Figure B.19: Bitmap of SCTAP2 (magnification=
-- 0-0).

134 APPENDIX B. TIE TEST PROBLEMS

Figure B.20: Bitmap of GROW22 (magnification =

Figure B.21: Bitmap of SCTAP3 (magnificatioi =

Figure B.22: Bitmap of SCSD8 (magnification =

Appendix C

Tables

C.1 Constant Number of Subproblems

The first five tables are the supporting data for Figures 4.3, anid 4.6-1.9, and the

follow arc descriptions of thecolumn headings.
NAME The name of a problem from our test suite.

n The number of nodes in the communication network.

p The number of IBM 3090/600E virtual processors.

ITN The total number of simplex method iterations executed on all subproblcms.

SLV The total number of solves for all subproblems.

DCPU The cpu time spent for input, solution, and output (micro-seconds).

SCPU The cpu time spent for solution (micro-seconds).

Work The cpu time spent forning and solving subproblems (micro-seconds).

SELP the solution elapsed time (micro-seconds).

OBJTRU the optimal objective value.

Rat the ratio of SCPU/SELP.

Eff the ratio of Rat/p.

Spd the speedup measured as the ratio of the smallest serial time using either MINOS
or DECOMP (p = 1).

Spin the percentage of solution time not spent forming and solving subproblems;
(SCPU-Work)/SCPU.

135

C.I. CONSTANT NUMBER OF SUBPIROBLEMS 137

Namic n p tin Driv Sly Tcpti Wik Cinch lnim Obtccdvc Pwr I'ff Srd Spin
SCAGR7 0 1 93 10 I 402 228 228 230 .0.2331389824331Dt7 0.99 V)96 1.0 0'UA
SCAGR7 0 1 93 10 1 407 232 232 235 .0.2331389824331D407 0.99 99% 1.0 01A
SCAGR7 7 1 452 43 188 8061 7869 6940 8125 .0.2331085468991D407 0.97 97% 0.0 121A
SCAGR7 7 1 452 43 1888 8127 7937 6996 8201 -0.2331085468991D407 0.97 97% 0.0 12.%
SCAGR°I 7 2 482 47 233 2058 1800 1410 1170 -0.2331341141112Di07 1.54 77% 0.2 22rA
SCAGR7 7 2 625 50 341 2646 2386 1956 1484 .0.2331306455361Di07 1.61 80% 0.2 18IS
SCAGR7 7 2 442 39 3101 1313 12863 10868 7996 .0.2331006478981Dt07 1.61 80% 0.0 161A
SCAGR7 7 3 562 41 306 2620 2316 1772 1278 -0.2330475061066D+07 1.81 60% 0.2 23%,
SCAGR7 7 3 467 45 262 2395 2092 1536 1097 -0.2331057799207D+07 1.91 64% 0.2 271X
SCAGR7 7 3 414 41 1750 9703 9403 6992 5791 .0.2331084668216D07 1.62 54% 0.0 26%
SCAGR7 7 4 331 47 211 2241 1887 1222 1067 -0.2331282252049D+07 1.77 44% 0.2 35%
SCAGR7 7 4 413 42 1717 12782 12437 6840 8930 .0.2322334978334D407 1.39 35% 0.0 45,X
SCAGR7 7 4 394 48 266 2723 2375 1492 1367 .0.2326167666179D407 1.74 43% 0.2 37'7
SCORPION 0 i 139 61 I 1150 785 785 797 0.18781248227381)104 0.98 98% 1.0 0%A
SCORPION 0 1 139 61 1 1150 7MS 785 793 0.1878124822738Dt04 0.99 99% 1.0 0%
SCORPION 6 1 280 126 114 2438 2027 1975 2072 0.1878124822738D*04 0.98 98% 0.4 3%
SCORPION 6 1 280 126 114 2437 2026 1974 2060 0.1878124822738D+04 0.98 98% 0.4 39"

SCORPION 6 2 279 125 130 4233 3774 2116 2337 0.1878124822738D404 1.61 81% 0.3 44,X
SCORPION 6 2 280 126 114 4141 3680 2034 2269 0.1878124822738D404 1.62 81% 0.3 45%
SCORPION 6 2 280 126 114 4179 3718 2058 2139 0.1878124822738D 04 1.74 87% 0.4 45X
SCORPION 6 3 278 124 132 4467 3959 2149 2334 0.1878124822738D404 1.70 57% 0.3 461
SCORPION 6 3 280 126 130 4496 3990 2143 2391 0.1878124822738Di04 1.67 56% 0.3 461X
SCORPION 6 3 280 126 116 4331 3824 2061 2216 0.1878124822738D*04 1.73 58% 0.4 46'
SCORPION 6 4 280 126 148 5297 4751 2221 3113 0.1878124822738Dt4 1.53 38% 0.3 53%
SCORPION 6 4 283 129 148 5019 4469 2234 2652 0.1878124822738D+04 1.69 42% 0.3 501
SCORPION 6 4 276 125 192 5391 4839 2464 3015 0.1878124822738D+04 1.60 40% n3 499
SCAGR25 0 1 475 116 1 4783 4343 4343 4382 .0.1475343306077D+08 0.99 99% 1.0 0%
SCAGR2 0 1 475 116 1 4768 4332 4332 4378 .0.1475343306077D408 0.99 99% 1.0 0X
SCAGR25 3 1 1317 71 1002 10190 9733 9343 9888 .0.7034688222719D407 0.98 98% 0.4 49X
SCAGR25 3 1 1317 71 1002 10247 9791 9396 9947 -0.7034688222719D 07 0.98 98% 0.4 4%
SCAGR2 3 2 1113 72 1002 17059 16554 9711 9909 .0.7034689473487D407 1.67 84% 0.4 411
SCAGR25 3 2 1120 72 1001 16475 15969 9619 9951 .0.7034689472408D407 1.60 80% 0.4 40
SCAGR25 3 2 1128 71 1001 16486 15983 9671 10111 -0.7034651433827D+07 1.58 79% 0.4 39X
SCAGR25 3 3 1009 76 1002 18167 17616 9699 10172 .0.7034651480718D407 1.73 58% 0.4 45X
SCAGR25 3 3 1023 76 1001 14344 17762 9761 10447 .0.7034688227004D407 1.70 57% 0.4 45%
SCAGR25 3 3 1012 71 1001 18457 17874 9776 10180 -0.7034651444565D+07 1.76 59% 0.4 451
SCAGR25 3 4 1024 76 1001 20497 19865 9819 11813 .0.7034651435092D+07 1.68 42% 0.4 5191
SCAGR25 3 4 1058 71 1003 21407 20770 9979 12934 .0.7034651432544D+07 1.61 40% 0.3 529
SCAGR25 3 4 1034 69 1001 21037 20410 9836 12466 .0.7034689474197D+07 1.64 41% 0.4 52%
SGTAPI1 0 I 354 138 1 2292 1888 1888 1926 0.14122500D000D+04 0.98 98% 0.8 0%
SCTAPI 0 1 354 138 1 2301 1S97 1897 1914 0.1412250000DOOD04 0.99 99% 0.8 0%
SCTAPI 10 1 513 30 163 1987 1531 1448 1576 0.1412250000000D+04 0.97 97% 1.0 5%
SCTAPI 10 1 513 30 163 1995 1539 1454 1577 0.1412250000000D+04 0.98 98% 1.0 691
SCTAPI 10 2 749 58 255 3009 2504 2197 1396 0.1412250000000D+04 1.79 90% 1.1 121
SCTAPI 10 2 627 29 204 2640 2130 1830 1228 0.141225DOO000D+04 1.73 87% 1.3 14X
SCrAP1 10 2 589 31 232 2690 2184 1892 1219 0.1412250000000D+04 1.79 90% 1.3 1391
SCTAPI 10 3 640 38 212 2839 2291 1887 1086 0.1412250DODO D+04 2.11 70% 1.5 18%
SCrAPI 10 3 645 33 231 2969 2417 2003 1078 .1412250000000D+04 2.24 75% 1.5 179(
SCTAPI 10 3 751 43 378 3824 3274 2823 1490 0.14122.000DODOD+04 2.20 73% 1.1 1491
SCTAPI 10 4 558 30 237 2965 2362 1915 1029 0.14122500OOOD+04 2.30 57% 1.5 191
SCTAPI 10 4 719 34 331 3806 3207 2616 143? 0.1412250000000D+04 2.24 56% 1.1 18A
SCrAPI 10 4 665 28 253 3653 3057 2136 7506 0.1,1225t0X0000D+04 1.90 48% 1.0 3051

Table C.2: ColnsLant number of subproblems.

138 APPENDIX C. TABLES

Namc n p in Driv Siy Tcnu Wrk Cinch Time Ojcdvc l.Kr I.ff Spd Spin
Sci"XMI 0 i 416 154 I 2901 2468 2468 2482 0.1841675902835D*05 0.99 99% 1.0 0'
SCFXMI 0 1 416 154 1 2896 2466 2466 2483 0.1841675902835D405 0.99 99% 1.0 0,
SCPXMI 4 1 2004 518 313 6587 6107 5981 6254 0.1841675902835D0O5 0.98 98% 0.4 2%
SCI:XMI 4 1 2004 518 313 6575 6095 5967 6175 0.1841675902835D405 0.99 99% 0.4 2X
SCIXMI 4 2 2023 505 332 11005 10475 6246 6191 0.1841675902835D05 1.69 85% 0.4 40,x
SCFXMI1 4 2 2016 510 324 10947 10415 6189 6193 0.1841675902835D405 1.68 84% 0.4 411A
SCFXMI 4 2 2031 513 356 11299 10765 6410 6223 0.1841675902835D 5 1.73 86% 0.4 4014
SCFXMI 4 3 2374 571 422 13956 13379 7585 7496 0.1841675902835D+05 1.78 59% 0.3 43%
SCFXMI 4 3 2011 508 362 11872 11299 6109 6379 0.1841675902835DS05 1.77 59% 0.4 43X
SCPXMi 4 3 1972 500 340 11636 11062 6163 6339 0.1841675902835Dt05 1.75 58% 0.4 44%
SCFXMI 4 4 2265 527 413 14509 13890 7254 8093 0.1841675902835D+05 1.72 43% 0.3 48%
SCFXMI 4 4 1975 491 354 12547 11922 6308 7089 0.1841675902835Di05 1.68 42% 0.4 47%
SCFXMI 4 4 1486 403 282 9702 9079 4774 51hO 0.1845102437697D0S 1.75 44% 0.5 47X
UROW7 0 1 190 18 1 1477 1 W) 109 1115 .0.4778?811814711)08 0.99 99% 0.8 YAI
GROW7 0 1 190 18 1 1488 1101 1101 I111 -0.4778781181471D408 0.99 99% 0.8 0%
GROW7 7 1 185 2 97 1289 867 814 893 -0.47T8781181471D.08 0.97 97% 1.0 6%
GROW7 7 1 185 2 97 1300 877 821 901 .0.4778781181471D408 0.97 97% 1.0 61X
GROW7 7 2 208 2 144 1804 1331 1110 766 .0.47787811814711D08 1.74 87% 1.2 17%
GROW7 7 2 218 1 115 1688 1212 987 710 -0.4778781181471D+08 1.71 85% 1.3 19,x
GROW7 7 2 119 2 74 1222 748 583 458 -0.4778781181471D408 1.63 82% 1.9 221A
GROW7 7 3 208 2 163 2074 1557 1217 800 -0.4778781181471D408 1.95 65% 1.1 22A
GROW7 7 3 210 2 167 2170 1652 1264 861 .0.4778781181471D+08 1.92 64% 1.0 23'I
GROW7 7 3 214 3 183 2228 1708 1352 890 .0.4778780861421D+08 1.92 64% 1.0 21%
GROW7 7 4 200 2 170 2276 1717 1270 896 -0.4778781181471D+08 1.92 48% 1.0 26"1A
GROW7 7 4 215 2 170 2203 1640 1293 796 -0.4778781181471D408 2.06 52% 1.1 21'A
GROW7 7 4 195 2 166 2417 1854 1228 1091 .0.4778781181471D.08 1.70 42% 0.8 34%A
SCSDI 0 1 206 182 1 1383 903 903 909 0.8666666674333D+01 0.99 99% 1.0 04
SCSDI 0 1 206 182 1 1381 899 899 908 0.8666666674333D+01 0.99 99% 1.0 0
SCSDI 3 1 857 653 31 2430 1901 1882 1922 0.8666666674650D+01 0.99 99% 0.5 i'X
SCSDI 3 1 857 653 31 2430 1897 1878 1920 0.8666666674650D+01 0.99 99% 0.5 1%
SCSDI 3 2 935 657 49 3272 2689 2101 1438 0.8666666674333D.01 1.87 93% 0.6 22
SCSDI 3 2 961 679 51 3329 2743 2164 1458 0.8666666674333D.01 1.88 94% 0.6 21 I
SCSDI 3 2 948 671 53 3330 2747 2137 1462 0.8666666674334D+01 1.88 94% 0.6 22%
SCSDI 3 3 677 517 25 3001 2374 1476 1127 0.8666666674333D+01 2.11 70% 0.8 38%
SCSD! 3 3 819 628 60 3803 3178 1973 1496 0.8666666674333DiO 2.12 71% 0.6 38%
SCSDI 3 3 1060 771 62 4383 3757 2442 1723 0.86666674334D401 2.18 73% 0.5 35"%
SCSDI 3 4 1032 744 73 4382 3715 2419 1561 0.8666666674333D+01 2.38 59% 0.6 35%
SCSDI 3 4 963 713 56 4352 3682 2230 1741 0.8666666674333D+01 2.11 53% 0.5 39%
SCSDI 3 4 589 438 42 2914 2241 1390 1045 0.8666666674333D+01 2.14 54% 0.9 3811
STAIR 0 1 473 36 1 6728 6196 6196 6271 .0.2512669511930D+03 0.99 99% 0.5 O%
STAIR 0 1 473 36 1 6693 6166 6166 6224 -0.2512669511930D+03 0.99 99% 0.5 0
STAIR 6 1 240 12 286 3870 3292 3175 3360 -0.2087999900000D+03 0.98 98% 1.0 4%
STAIR 6 1 240 12 286 3914 3333 3215 3403 -0.2087999900000D+03 0.98 98% 1.0 4cA
STAIR 6 2 228 12 301 6542 5909 3424 3453 -0.2087999900000D+03 1.71 86% 1.0 421X
STAIR 6 2 229 12 292 6525 5896 3370 3508 .0.208799.90000D403 1.68 84% 1.0 43%
STAIR 6 2 232 12 291 6484 5851 3364 3511 .0.2087999900XCD+03 1.67 83% 1.0 43%
STAIR 6 3 216 12 294 6983 6310 3386 3710 .0.2087999900000D+03 1.70 57% 0.9 46A
STAIR 6 3 228 12 288 7066 6393 3310 3723 -0.2087999900000D+03 1.72 57% 0.9 48%
STAIR 6 3 214 12 294 7204 6531 3385 3730 -0.2087999900000D+03 1.75 58% 0.9 48%
STAIR 6 4 214 12 290 7752 7023 3376 4035 -0.2087999900000D+03 1.74 44% 0.8 52,X
STAIR 6 4 214 12 289 7484 6761 3362 3808 .0.2087999900000D+03 1.78 44% 0.9 50"A
STAIR 6 4 214 12 287 7701 6977 3329 4083 .0.20879999000D403 1.71 43% 0.8 52q,

Table C.3: Constant number of subproblems.

C.1. CONSTANT NUMBER OF SUBPROBLEMS 139

Nanx _ n p I DPiv Sly "'cpu Wrk Cinch Tirnc Objective Pwr hff Spd Spin

SCRS8 0 1 861 319 i 9207 8507 8507 8656 0.9042969538008D403 0.98 98% 0.3 0',
SC1S8 0 1 861 319 1 9211 8511 8511 8585 0.9042969538008DiO3 0.99 99% 0.3 IX
SCRS8 7 1 823 235 99 3330 2555 2499 2595 0.901296953800SD+03 0.98 98% 1.0 2'A
SCRS8 7 1 823 235 99 3316 2544 2490 2583 0.9012969538008DNO3 0.98 98% 1.0 27
SCRS8 7 2 788 232 1 1 4766 3934 2644 2182 0.9012969538008D+03 1.80 90% 1.2 331
SCRS8 7 2 787 231 130 4720 3893 2615 2116 0.902969538008D 03 1.84 92% 1.2 331
SCRS8 7 2 801 233 118 4680 3857 2568 2122 0.9042969538008D+03 1.82 91% 1.2 331
SCRS8 7 3 805 234 145 5047 4180 2759 2123 0.901296953800SD+03 1.97 66% 1.2 34'A
SCRSS 7 3 790 233 144 5103 4225 2751 2103 0.90129695380OSD403 2.01 67% 1.2 35A
SCRS8 7 3 799 234 126 4911 4042 2615 2078 0.90429695380081)403 1.95 65% 1.2 35S
SCRS8 7 4 806 235 155 5512 4590 2889 2156 0.90296953800$D+03 2.13 53% 1.2 371
SCRSS 7 4 806 234 157 5379 4465 2856 2138 0.904296953800D 03 2.09 52% 1.2 36%
SCRS8 7 4 807 235 148 5510 4594 2850 22.14 0.9012969538008DSO3 2.05 51% 1.2 38.
PILO 4 0 1 3730 1111 1 51213 504117 5G.17 51028 .0.2581016628137D+04 0.99 99% 0.3 U'A
1ILOT4 0 1 3730 1111 1 51321 50535 50535 51127 .0.2581016628;37D,4 0.99 99% 0.3 09
PILOT4 4 1 2512 178 420 16777 15951 15636 16277 .0.7319905016480D+12 0.98 98% 1.0 2
PILOT41 4 1 2542 178 420 16807 15980 15663 16596 .0.7319905016.180D12 0.96 96% 1.0 21A
PILOT4 ,1 2 3084 1168 407 NNNN N#N # 88612 90094 -0.461321896112,1D+15 1.86 93% 0.2 47A
111".014 4 2 2345 179 423 29526 28616 15825 16272 .0.7319896083688D+12 1.76 88% 1.0 45'
PIT1.04 4 2 467 161 58 5701 4788 3268 2659 .0.3550972527810D+12 1.80 90% 6.1 32A
lILOT4 4 3 829 177 154 12601 11676 6378 6009 .0.1349535969926D+15 1.94 65% 2.7 459
I'ILOT4 4 3 2334 177 422 32360 31379 16217 17092 .0.7319897177463D+12 1.84 61% 1.0 489
PIL.O'r4 4 3 2334 177 422 31835 30884 16064 17392 .0.7319897177463D+12 1.78 59% 0.9 48
PII.0T4 4 4 455 161 61 6599 5583 3321 2564 -0.1704946512274D+13 2.18 54% 6.3 41
PII.OT4 4 4 2329 175 422 33517 32501 16089 18072 .0.7168-199466778D+12 1.80 45% 0.9 5
PII.OT4 4 4 455 161 58 6778 5801 3323 2979 .0.3026879763031D.13 1.95 49% 5.5 431
SCXM2 0 1 833 292. 1 10257 9439 9439 11558 0.36660261S6500D,05 0.82 82% 0.8 09
SCFXM2 0 1 833 292 110214 9407 9407 9511 0.3666026156500D*05 0.99 99% 1.0 0'
SCIXN2 8 1 5789 991 678 16627 15752 15423 16273 0.3666029249815D+05 0.97 97% 0.6 2,X
SCPXM2 8 1 5789 991 678 16574 15705 15376 15951 0.3666029249815D+05 0.98 98% 0.6 2A
SCFXM2 8 2 6220 1062 856 19118 18191 17652 9802 0.3666026466566D+05 1.86 93% 1.0 3'
SCFXM2 8 2 6054 1071 814 18534 17603 17083 9117 0.3666026790764D+05 1.93 97% 1.0 39A
SCIXM2 8 2 6460 1157 930 20319 19397 18459 10017 0.3666026156500D.05 1.94 97% 0.9 s!]
SCFXM2 8 3 5976 1043 927 20953 19983 17757 7807 0.3666026378162D+05 2.56 85% 1.2 11
SCFXM2 8 3 6024 1015 871 20797 19819 17550 7396 0.3666028795628D+05 2.68 89% 1.3 11
SCFXMZ 8 3 6546 1217 1234 25213 24241 20509 9325 0.3666026156500DO05 2.60 87% 1.0 15
SCI-XN2 8 4 5514 1053 1029 22702 21678 17861 8211 0.3666026167255D+05 2.64 66% 1.2 18
SCFXM2 8 4 5443 1052 1000 22950 21928 17641 7702 0.3666027096909D+05 2.85 71% 1.2 2
SCFXM2 8 4 4862 945 858 20527 19471 15608 7469 0.3690368120357D405 2.61 65% 1.3 21
GROWl5 0 1 539 40 I 6597 5869 5869 5925 .0.1068709412936D409 0.99 99% 0.5 0%
GROWLS 0 1 539 40 1 6709 5979 5979 6060 .0.1068709412936D+09 0.99 99% 0.5 0"A
GROWl5 15 1 589 1 307 3610 2810 2653 2890 .0.1068709412936D.O9 0.97 97% 1.0 69
GROWLS 15 1 589 1 307 3591 2796 2639 2879 .0.1068709412936D+09 0.97 97% 1.0 69
GROWl5 15 2 899 8 644 6600 5754 5104 3217 .0.1068709412936D+09 1.79 89% 0.9 11
GROWl5 15 2 1169 7 328 5232 4385 3904 2414 -0.1068709412936D409 1.82 91% 1.2 11
GROWLS 15 2 959 6 411 5212 4363 3847 2419 .0.1068709412936D+09 1.80 90% 1.2 12
GROWl5 15 3 720 2 363 4674 3783 3234 1711 0.1068709412936D+09 2.21 74% 1.7 1 5
GROWLS 15 3 1073 1 4790 31369 30477 26108 14349 .0.1068709412936D+09 2.12 71% 0.2 14
GROWl5 15 3 1263 6 716 8018 7127 6244 2998 -0.1068709412936D+09 2.38 79% 1.0 12
GROW15 15 4 944 4 680 7661 6723 5618 2629-0.1068709412936D+09 2.56 64% 1.1 16
GROW15 15 4 1100 4 498 6319 5385 4707 2165 -0.1068709412936D+09 2.49 62% 1.3 13
GROW15 15 4 1066 3 499 6623 5689 4801 2280 .0.10687n9412936D.09 2.50 62% 1.3 16.

Table 0.4: ConstanL number of subproblems.

1,40 APPENDIX C. TABLES

N amc n p Itn DPlv Sly Tcpu Wk Cnch Time Objccdvc Pwkr il.f Spd Spin
sCSI)6 0 I 520 356 I 3214 2389 2389 2409) OL.50500.07714D+02 099 99'b 1.0 0%
SCSD6 0 1 520 356 1 3209 2386 2386 2435 0.505000007714D+02 0.98 98% 1.0 01
SCSD6 7 1 2050 1273 107 3806 2913 2858 2960 0.50500000075760402 0.98 98% 0.8 2,X
SCSD6 7 1 2050 1273 107 3831 2933 2877 2983 0,5050000007576D+02 0.98 98% 0.8 21A
SCSD6 7 2 2379 1480 137 4918 3970 3494 2101 0.505000000356D002 1.89 94% 1.1 12A
SCSD6 7 2 2051 1265 1i1 4354 3407 2944 1813 0.5050000007375D.02 1.88 94% 1.3 14
SCSD6 7 2 1933 1226 89 4086 3139 2676 1659 0.5050000001402D.02 1.89 95% 1.5 15
SCSD6 7 3 2329 1450 167 5196 4206 3553 1718 0.5050000008919D.02 2.45 82% 1.4 16
SCSD6 7 3 2467 1583 174 5298 4304 3759 1735 0.50500O00080.61).02 2.48 83% 1.4 13'
SCSD6 7 3 2666 1625 162 5558 4564 39.4 1849 t0.505000006985D 02 2.47 82% 1.3 14 1
SCSD6 7 4 2425 1517 166 5848 4815 3697 2012 0.5050000007355D02 2.39 60%N 1.2 23
SCSD6 7 4 2380 1494 230 5957 4918 4018 1822 0.5050000007633D+02 2.70 67% 1.3 18%
SCSD6 7 4 2336 1480 217 5653 4619 3835 1727 0.5050000007620D.02 2.67 67% 1.4 171
SCIFXM3 0 1 1252 422 1 21815 20526 20626 20891 0.54901254549751)G5 0.99 99% 1.0 0'
SCI:XM3 0 1 1252 427 1 21995 20818 20818 23007 0.5490125454975D.05 0.90 90k 0.9 0'7
SCI:XM3 12 1 11525 1805 1282 34435 33172 32565 33854 0.5490130154424D+05 0.98 98% 0.6 21
SCFXM3 12 1 11525 1805 1282 34661 33379 32762 35018 0.5490130154424D+05 0.95 95% 0.6 2,X
SCI:XM3 12 2 10285 1659 1296 32072 30749 30072 15776 0.5490128935557D405 1.95 97% 1.3 2'7
SCXM3 12 2 13711 2106 1760 43173 41838 40905 22778 0.5490131599008D05 1.84 92% 0.9 29
SCPXM3 12 2 10049 1610 1280 31560 30234 29336 17237 0.5490131076105D+05 1.75 88% 1.2 3sA
SCI:XM3 12 3 10675 1715 1544 35177 33810 32859 11796 0.5490130150784D+05 2.87 96% 1.8 3X
SCFXM3 12 3 9672 1546 1335 31359 30002 29092 10542 0.5490128591737D+05 2.85 95% 2.0 3X
SCFXM3 12 3 9399 1644 1339 30203 28846 28031 10289 0.5490129861552D+05 2.80 93% 2.0 3'X
SCFXM3 12 4 10424 1700 1711 37914 36495 33695 10347 0.5490133831142D+05 3.53 88% 2.0 81
SCIXM3 12 4 10504 1729 1864 38979 37546 34656 11305 0.5490128849170D+05 3.32 83% 1.8 8
SCrFXM3 12 4 9153 1558 1630 33829 32415 30018 9119 0,549012726719904+05 3.55 89% 2.3 7
SCrAP2 0 1 1529 811 1 30211 28847 28847 29096 0.1724807142857D+04 0.99 99% 0.1 09
SCrAP2 0 1 1529 811 1 30170 28802 28802 28994 0.1724807142857D0+0 0.99 99% 0.1 09
SCTAP2 10 1 809 126 154 5252 3778 3695 3844 0.1724807142857D404 0.98 98% 1.0 2%
SCrAP2 10 1 809 126 154 5239 3766 3687 3823 0.1724807142857D+01 0.99 99% 1.0 2"X
SCRAP2 10 2 885 115 217 6747 5220 4558 2760 0.1724807142857r+'04 1.89 95% 1.4 13"A
SCTAI2 10 2 985 135 274 7541 5996 5329 3191 0.172480714285713+04 1.88 94% 1.2)1)
SCRAP2 10 2 907 111 193 6588 5058 4411 2715 0.1724807142857D+01 1.86 93% 1.4 13
SCRAP2 10 3 1053 118 266 7943 6366 5594 2511 0.1724807142857D+04 2.54 85% 1.5 12
SCTAP2 10 3 974 111 218 7151 5576 4875 2246 0.1724807142857D+04 2.48 83% 1.7 13
SCRAP2 10 3 917 126 253 7304 5734 5023 2326 0.1724807142857D040 2.47 82% 1.6 12

SCIAP2 10 4 972 116 276 7889 6263 5369 2134 0.1724807142857D+04 2.93 73% 1.8 141
SCRAP2 10 4 982 126 271 8029 6410 5446 2326 0.1724807142857D+04 2.76 69% 1.6 15
SCTAP2 10 4 1082 142 321 8979 7350 6329 2581 0.1724807142857D+4 2.85 71% 1.5 141
GROW22 0 I 921 100 1 18647 17611 17611 17772 .0. 1608343364826D+09 0.99 99% 0.3 0'A
GROW22 0 1 921 100 1 18728 17687 17687 17830 .0.1608343364826D+09 0.99 99% 0.3 01
GROW22 22 1 825 2 519 5729 4597 4341 4706 .0.1608343364826D+09 0.98 98% 1.0 6CA
GROW22 22 1 825 2 519 5738 4611 4350 4718 .0.1608343364826D409 0.98 98% 1.0 611
GROW22 22 2 883 0 659 7114 5933 5207 3466 .0.1608343364826D+09 1.71 86% 1.4 12C
GROW22 22 2 929 1 742 7753 6572 5769 3725 .0.1608343364826D+09 1.76 88% 1.3 129
GROW22 22 2 952 2 743 7961 6779 5957 4008 -0.1608343364825D+09 1.69 85% 1.2 121A
GROW22 22 3 917 3 727 8049 6827 5720 3242 .0.1603343364826D09 2.11 70% 1.5 16S
GROW22 22 3 1134 1 573 7538 6311 5426 2869 -0.1608343364826D409 2.20 73% 1.6 4 1A
GROW22 22 3 772 3 726 7959 6728 5482 3378 .0.1608343364826D409 1.99 66% 1.4 199
GROW22 22 4 1104 0 626 7885 6611 5668 2678 .0.1608343364826D+09 2.47 62% 1.8 14.
GROW22 22 4 939 3 592 7482 6207 587 2508 -0.1608343364826D+09 2.47 62% 1.9 169
GROW22 22 4 961 0 560 7218 5946 5067 2280 -0.1608343364826D409 2.61 65% 2.1 159A

Table C.5: Constant number of subproblems.

C-1. CONSTANT NUMBER OF SUBPROBLBMS 141

Nknic n p Itn D11v Sly Tcpu Wrk Cinch Tinja Obctivc PV.T Eft Spd Spin
SCI'AP3 0 1 1696 1012 1 43964 42160 42160 42570 0.14240000000M0Ds04 0.99 9916 0.1 0%
SCTAP3 0 1 16% 1012 1 43929 42119 42119 42423 0.142400C00000D04 0.99 99% 0.1 01
SCTAP3 10 1 677 87 134 5958 4008 3937 4065 0.1424000000000D+04 099 99% 1.0 2S
SCrAP3 10 1 677 87 134 5939 3997 3928 4054 0.1424000000000D+04 0.99 99% 1.0 2S
SCrAP3 10 2 707 77 144 6892 4907 4131 2601 0.1424000000000D+04 1.89 94% 1.6 161
SCrAP3 10 2 750 82 143 7075 5084 4299 2724 0.1424000000000D+04 1.87 93% 1.5 15
SCrAP3 10 2 759 82 140 7065 5073 4302 2667 0.1424000000000D404 1.90 95% 1.5 15
SCI'%P3 10 3 742 81 223 8129 6093 5108 2535 0.1424000000000D+04 2.40 80% 1.6 16
SCTAP3 10 ,l 769 85 221 8264 6224 5275 2527 0.1424000000000D+04 2.46 82% 1.6 15
SCFAP3 10 3 759 86 239 8357 6315 5354 2574 0.1424000000000D+04 2.45 82% 1.6 ISI
SCrAP3 10 4 750 85 259 9322 7241 5556 2960 0.142400000000D+04 2.45 61% 1.4 23S
SCrAP3 10 4 737 83 201 8315 6228 4948 2376 0.1424000000000D+04 2.62 66% 1.7 211
SCrAP3 10 4 744 80 239 8570 6487 5356 2291 0.1424000000000D+04 2.83 71% 1.8 171
SCSD8 0 I 1174 817 1 15722 14109 14109 14225 0.9049V99.9255D 03 0.99 99% 0.7 0A
SCSD8 0 1 1174 817 1 15699 14075 14075 14179 0.904999999925SD403 0.99 99% 0.7 07
SCSD8 7 1 4381 3174 102 11450 9709 9657 9802 0.9049999999255D+03 0.99 99% 1.0 IS
SCSD8 7 1 4381 3174 102 11463 9713 9661 9831 0.9049999999255D+03 0.99 99% 1.0 I
SCSD8 7 2 4149 3055 150 13104 11303 9322 5870 0,9049999999255D+03 1.93 96% 1.7 18
SCSD8 7 2 4326 3173 150 13676 11881 9962 6140 0.9049999999255D+03 1.94 97% 1.6 167
SCSD8 7 2 4210 3099 150 13310 11516 9525 5971 0.9049999999255D403 1.93 96% 1.6 17S
SCSD9 7 3 5091 3702 157 15742 13902 11655 5524 0.9049999999255D 03 2.52 84% 1.8 16
SCSD8 7 3 5105 3756 204 16086 14250 11997 5675 0.9049999999254D+03 2.51 84% 1.7 16
SCSDS 7 3 3840 2816 176 13444 11605 9228 4832 0.9049999999454D+03 2.40 80% 2.0 2
SCSD8 7 4 4443 3323 183 14744 12865 10388 4584 0.904999999257D+03 2.81 70% 2.1 19
SCSD8 7 4 5638 4068 215 17828 15936 13352 5344 0.9049999999255D+03 2.98 75% 1.8 16
SCSD8 7 4 5022 3707 251 17046 15163 12069 5508 0.90499999')99254D+03 2.75 69% 1.8 2]

Table C.6: Constant number of subproblems.

142 APPENDIX C. TABLES

C.2 Varying the Number of Subproblems

The next three tables support Figures '1.10 - 4.12 and following are descriptions of

their column headings.

NAME The name of a problem from our test suite.

N The number of subproblems.

DECOMP/1 The amount of work, time, or speedup rcquired to solve SCSDS/N
with one processor.

DECOMP/2 The amount of work, time, or speedup required to solve SCSD8/N
with two processors.

DECOMP/3 The amount of work, time, or speedup required to solve SCSDS/N
with th iree processors.

DECOMP/4 The amount of work, time, or speedup required to solve SCSD8/N
with four processors.

\Vork is in CPU seconds, Time is in seconds, and Speedup is dimensionless.

Name N DECOIP/f DECONIPI/2 DECNIPY. DECOMPI4
SCD8 '- 14.1 2o.9 23.7 23.5

4 11.6 17.1 18.3 17.7
-6 10. 9 14.0 16.8 15.9
8 12.3 14.8 21.7 20.3

10 9.7 12.2 11.5 13.7
12 I0A 12.2 11!.4 15.4

14 9.4 13.8 16.5 14.2
16 14.5 12.8 13.6 14.5
18 11.5 14.4 13.6 18.2
20 15.8 16.7 12.8 14.7
22 14.3 16.4 18.1 16.5
24 14.7 18.1 15.5 18.4
26 18.1 22.5 22.4 15.9
28 21.3 22.0 17.1 20.8
30 20.3 26.4 20.9 30.7
32 24.1 21.8 26.7 19.8
34 22.6 25.6 26.3 23.8
36 19.9 22.5 28.5 25.2
39 24,7 30.6 21,0 21.1

Table 0.7: Work for a varying number of subproblems.

C.2. VARYING TIlE NUMBER OF SUBPROBLEMS 1,13

Name N DEICON1PI I)CONIP/2 DIECONIP/3 J)ECONIPI4
-C - -D8 -311.7 . - 8.1
4 10.9 8.3 6.1 3.6
6 10.3 6.8 5.8 4.68 11.7 7. 7.1

10 9.1 5.8 3.9 3.4
12 9.4 5.8 3.7 3.8
14 8.7 6.6 5.4 3.7

16 13.9 6.1 4.4 3.6
18 10.9 6.9 4.3 4.6
20 15.2 8.0 5.8 3.6
22 13.7 7.9 5.9 4.0
24 14.0 R.9 5.0 4,5

26 17.4 11i.0 7.3 3.9
28 20.7 10.7 5.6 5.1
30 19.6 12.9 6.8 7.7
32 23.4 10.7 8.8 5.0
34 22.0 12.5 86 1 5.9
36 19.3 11.0 9.3 6.2
38 24.0 15.1 6.8 5,2

Table C.8: Time for a varying number of subproblems.

Name N DECONII1 DECOMP/2)ECOMW3)ECOMPI4
SCSD8 2 1.0 1.2 1.6 1.7

4 1.0 1.3 1.8 2.0
6 1.0 1.5 1.8 2.2

-8 1. 1.6 1.6 2.2
10 1.0 1.6 2.3 2.7
12 1.0 1.6 2.5 2.5
14 1.0 1.3 1.6 2.4
16 1.0 2.3 3.2 3.9
18 1.0 1.6 2.5 2.4
20 1.0 1.9 2.6 4.2
22 1.0 1.7 2.3 3.4
24 1.0 1.6 2.8 3.1
26 1.0 1.6 2.4 4.5
28 1.0 1.9 3.7 4.1
30 1.0 1.5 2.9 2.6
32 1.0 2.2 2.7 4.7
34 0 .. L 2.5 3.
36 1.0 1.8 2.1 3.1
3__IO 1,6 3.5 4.6

Trable C.9: Speedup for a varying number of subproblems.

144 APPENDIX C. TABLES

C.3 Varying the Number of Processors

The last tab!c supports Figures ,.13 and 4.14, and following are descriptions of their

column headings.

Problem Name The format is Name/N/p, where Name is the name of the test
problem, N is the number of subproblems, and p is the number of processors.

Total Iterations The simplex method iterations done on all subproblems.

Degen Iterations The number of degenerate simplex iterations done on all sub-
problems.

Total Solves The number of subproblems solved.

Total Work The number of CPU seconds used for the entire run.

Power The effective number of CPUs applied to the problem: \Work/Time.

Work The number of CPU seconds used to form and solve the subproblems.

Time The Elapsed seconds needed to form and solve the subproblems.

Obective Value The objective value obtained for the overall LP problem.

Problem Total Degen Total Total Objective
Name lins. fins. Solves Work Power Work Time Value

SCSD8/39/1 14195 3952 279 31.1 1.0 28.0 28.0 9.0499999992489E+02
SCSD8/39/2 17970 5100 3457 39.7 2.0 35.8 17.9 9.0499999998733E 02
SCSD8/39/3 14598 4234 2626 31.7 2.9 27.8 9.4 9.0500000005023E+02
SCSD8/39/4 16402 4849 3375 39.4 4.0 34.6 8.7 9.0499999989715E*02
SCSD8/39/5 14997 4624 3106 37.1 4.8 31.9 6.6 9.499999993473E+02
SCSD8/391/ 9967 3647 1861 25.9 5.6 20.9 3.7 9.0499999991451E+02
SCSD8/39/7 6721 4988 3121 40.5 6.5 34.6 5.3 9.0499999992473E+02

Table C.10: Power, Work and Time for a varying number of processors.

Bibliography

(Abr83) Philip G. Abrahamson (1983). A Nested Decoinposition Approach for

Solving Staircase Linear Programs. Ph.D. Dissr ration, Department of

Operations Research, Stanford University, Stanford, California.

[ARSS] ByongIlun Ahn and Seung-Kyu Rhcc (1988). Cooperative variant of

Dantzig-Wolfe decomposition method. Draft Report, Department of

Management Science, Korea Advanced Institute of Science and Tech-

nology, Seoul, KOREA.

[Bea55] E. Martin L. Beale (1955). On minimizing a convex function subject to

linear inequalities. Journal of the Royal Statistics Society 17, 173-184.

(Ben62 Jacques F. Benders (1962). Partitioning procedures for solving mixed-

variable programming problems. Numerische Malthemalik '1, 238-252.

[BcTS9J Dimitri P. Bertsekas and John Tsitsiklis (1989). Parallel and Distributed

Computation: Numerical Methods. Prentice-Ifall, Englewood Cliffs, NJ.

[Bir85] John R. Birge (1985). Decomposition and partitioning methods for mul-

tistage stochastic linear programs. Operations Research 33, 989-1007.

[Bun76 James R. Bunch (1976). Block methods for solving sparse linear systems.

Sparse Matrix Computations, James R. Bunch and Donald J. Rose (edi-

tors). Academic Press, New York, New York.

145

146 BIBLIOGI"PJJY

[0DM79 Harlan Crowder, Ron S. Dembo and John M. Mulvey (1979). On re-

porting computational experimonts with mathematical software. AQV

Tr nsactions on Afalhematical Sofgwcire 5, 193-203.

[Chv83] Vack Chvital (1983). Linear PArramming. W. 11. Freeman and Com-

pany, New York and San Francisco.

(Dan55 George B. Dantzig (1955). Linear programming under uncertainty. Alan-

agemncnt Science 1,197-206.

[Dan59 GCeorge B. Dantzig (1955). On the status of multistage linear program-

ming problems. Management Science 6, 53-72.

[DanG3J Oeorge B. Dantzig (1963). Linear Programming and Extensions. Prince-

ton University Press, Princeton, New Jersey.

(Dar:73] George B. Dantzig (1973). Solving staircase linear programs by a nested

block-angular method. Report SOL 73-1, Department of Operations Re-

search, Stanford University, California.

(DanS7) Ceorge B. Dantzig (1987). Origins of the simplex method. Report SOL 87-

5, Department of Operations Research, Stanford University, California.

[DF87] Jack J. Dongarra and Eric Grosse (1987). Distribution of mathematical

software via electronic mail. Communications of the ACA! 30, 403-407.

[DG88 George B. Dantzig and Peter W. Olynn (1988). Parallel processors for

planning under uncertainty. Report SOL 88-8R, Department of Opera-

tions Research, Stanford University, California.

[DGGG4] William S. Dorn, Ralph E. Gomory, and Harvey S. Greenberg (1964).

Automatic design of optimal structures. Journal d Mcchaniquc 3, 25-

52.

[DufS4] lain S. Duff (1984). Data structures, algorithms and software for sparse

matrices. AERE Harwell Report CSS 158, IMSO, London.

BIBLIOGRAPIIY 147

[DVG1] George B. Dantzig and Philip Wolfe (1961). Tie decomposition algorithm

for linear programming. Economclrica, Vol. 29, No. 4.

[E\V88] Yuri Ermolicv and Roger J-B Wts (Editors) (1988). Numerical Tech-

niques of Stochastic Optimi:ation, Springcr-Verlag, Berlin.

[FouS9] John J. 1I. Forrest (1989). Conversation onl the IBM VMS operating

system. IBM T. J. Watson Researd Center, Yorktown Heights, New

York.

[Fou82] Robert W. Fourer (1982). Solving staircase linear programs by the sim-

plex method, 1: Inversion. Mathematical Progmnming 23, 27.1-313.

LF'C8s] John J. 11. Forrest and John A. Tomlin (1988). Vector processing in

simplex and interior methods for linear programming. Presented at the

workshop on Supercomputers and Large Scale Optimi:ation, University

of Minnesota, May 1988.

[GayS5] David M. Gay (1985). Electronic mail distribution of linear programming

test problems. Malhernatical Piograyming Society COAL Ncrsleter, Dc-

cemher 1985.

[Geo70] Arthur M. Geoffrion (1970). Elements of large-scale mathematical pro-

gramminig: Parts I and II. Atanagemrnet Science 16, 652-691.

1GLS9J J. Alan George and Joseph W-11. Liu (1989). On the evolution of the

minimum degree algorithm. SIAM Review 31, 1-19.

[Gla71 C. Roger Glassey (1971). Dynamic linear programs for production

scheduling. Operations Research 19, 45-56.

[Gla73I C. Roger Glassey (1973). Nested decomposition and multi-stage linear

programs. Management Science 20, 282-292.

ills
BIBLIOGRAPIY

[Co156] Man J. Goldman (1956). Resolution and separation theorems for polyhe-

dral -onvex sets, in Linear Inequalities and Related Systems, Harold \V.
Kuhn and Albert W. Tucker (editors), Princeton Univcrsity Press.

[GoIS0) E. G. Gol'shteyn (1986). The block method of convex programming. Soviet

Math. Dokl. 33, 5S4-5S7.

fGolST) E. C. Gol'shte'in (1987). A general approach to decomposition of opti-
mization systems. Soviet Journal of Computing and Systcms Science 25,

105-114 [translated from Tekhnichcskaya Kibernctika 1, 59-69, (1987)).

(GMSWST7 Philip E. Gill, Walter Murray, Michael A. Saunders and Margaret If.
Wright (1987). Maintaining LU factors of a general sparse matrix. Linear

Algebra and its Applications 88/89, 239-270.

[llieS2] Kathie L. Iliebert (1982). An evaluation of mathematical software that
solves systems of nonlinear equations. ACM Transactions on Mathcnat-

ical Software 8, 5-20.

[11o74) James K. tlo (1974). Nested decomposition of large scale linear programs
with the staircase structure. Ph.D. Dissertation, Department of Opera-

tions Research, Stanford University, Stanford, California.

[IILSIa] James K. Iio and Etienne Loute (1981). A set of staircase linear pro-
gramming test problems. Afatheniatical Programming 20, 2,15-250.

[lLSb] James K. Ho and Etienne Loute (1981). An advanced implementation

of the Dantzig-Wolfe decomposition algorithm for linear prograhmmng.
Afathematical Programming 20, 303-326.

[IILSSS] James K. Ho, Tak C. Lee and R. P. Sundarraj (1988). Decomposition of

linear programs using parallel computation. Mathematical Proyrrnmiming

242, 391-405.

BIBLIOGRAPIY 1,9

IJBNP891 Richard 11. F. Jackson, Paul T. Boggs, Stephen C. Nash and Susan

Powell (1989). Report of the ad hoc committee to revise the guidelines

for rporling compulational cXpcriments in inath ematical progrann iy.

Mathematical Programming Society, Committee on Algorithms.

[Ka176) Peter Kall (1976). Stochastic Program ming. Springer-Vcrlag, Berlin.

[oo86a) Freek A. Iootsma (1986). State-of-the-art in parallel unconstrained op-

timization. Parallel Computing 5, 157-163.

(LoRSS] Frcck A. Lootsma and Kenneth M. Ragsdell (198S). State, of-the-art in

parallel nonlinear optimization. Parallel CGompnding 6, 131-155.

[LusS7) Irvin J. [Lustig (197). An analysis of an available set of linear program-

ming test problems. Report SOL 87-11, Department of Operations Re-

serch, Stanford University, California.

[Mar57] Harold M. Markowitz (1957). The elimination form of the inverse and its

application to linear programming. Management Science, 3, 253-269.

(MSS7] Bruce A. Murtagh and Michael A. Saunders (1987). MINOS 5.1 user's

guide (revised). Report SOL 83-20R, Department of Operations Research,

Stanford University, Stanford, California.

1Rei86 John K. Reid (1986). Sparse matrices. AERE Ilarwell Report CSS 201,

IMSO, London.

[Roc76] R. Tyrell Rockafellar (1976). Monotone operators and the proximal point

algorithm. SIAM Journal on Control and Optimization 14, S77-S98.

(Ros70] Donald J. Rose (1970). Symmetric elimination on sparse positive definite

systems and potential flow network problems. Ph.D. Thesis, H arvard Uni-

versity, Cambridge, Massachusetts.

(Roy83] Tony J. van Roy (1983). Cross decomposition for mixed integer program-

ming. Mathematical Programming 25, 46-63.

150 BIBLIOGRAP1HY

[StuSS) Craig B. Stunkel (1988). Linear optimization via message-based parallel

processing. Proceedings of the 1988 International Conference on Paral-
lel Processing, Volume III, 264-271. The Pennsylvania State University

Press, University Park, Pennsylvania.

[Tar76] Robert E. Tarjan (1976). Graph theory and Gaussian elimination. Sparse
Matrix Computations, James R. Bunch and Donald J. Rose (editors).
Academic Press, New York, New York.

[TomS7] John A. Tomlin (1987). Mathematical programming and supercomputers.
Ketron Management Science, Inc., Mountain View, California.

[VW69] Richard Van Slyke and Roger J-B Wets (1969). L-shaped linear programs
with applications to optimal control and stochastic programming. SbIAM
Journal of Applicd Mathcmatics 17, 638-663.

[VSG.1] Richard Van Slyke (1964). Mathematical Programming and Optimal

Control. Ph.D. thesis, University of California, Berkeley.

(We89] Joseph Wells (1989). Conversation on the IBM MVS operating system.
IBM T. J. Watson Researcl Center, Yorktown Hleights, New York.

(\Vit83 Robert J. Wittrock (1983). Advances in a Nested Decomposition Algo-
rithm for Solving Staircase Linear Programs. Ph.D. Dissertation, Depart-
ment of Operations Research, Stanford University, Stanford, California.

[Zad62] Lotfi Zadch (1962). Note on linear programming and optimal control.

IRE transactions on Automatic Control 7.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (1Uho D-sIAfff94% _ __..

REPORT DOCUMENTATIOW PAGE READ INSTRUCTIONS
MR 3 GOT AC BFORE COKPLErI'nWG FORMd

1. o ". GovTr ACCuSSIO NO I. RECIPIENT'S CATALOG NUiM ERSL 89-17 1
4. TITLE (anin Jw6#11S) I. TYPE OF REPORT 6 PERIOD COVAERO

The Parallel Decomposition of Linear Programs Technical Report

S. P[RFOIIIING OiG. RElPORT NUNSlM

7. AUTHOR(e) . C0oTRACT OR GRANT NUMUCR(,)

1I00014-89-J-1659 Grant
Robert Entriken t100014-87-K-0142 Contract

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EILEI[ENT.PROJgCT, TASK

Department of Operations Research - SOL AREA A WORK UNIT MUMBLRS

Stanford University
Stanford, CA 94305-4022

11. CONTROLLING OFF ICE NAME AND ADDRESS I. REPORT DATE
Office of Naval Research - Dept. of the Navy November 1989
800 N. Quincy Street 1. NUWIER OF PAGES
Arlington, VA 22217 150 pp.

IS. SECURITY CLASS. (of 1ie tepe

UNCLASSIFIED
49 CASSIFICATIONI/DOWNGRAOING
SCM OULI[

16. OISTRIUUTION STATEMENT (of 011 Rpet)

This document has been approved for public release and sal-.
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (of Ie 0keeweat 1mf la DII88A 20. 11 dlftaet krM ROP-f)

IS. SUPP.EMNTARY NOTES

IS. KEY WORDS (CWMewen se frm&* died 1104ee6Mr -W lI1' byr WeM beft)

linear program; optimization; decomposition;
p~rallel computers; mathematical program

20. ABSTRACT (ConIm..nwe n Iweoo sile 11nces., d Isoid y b, Wek MR W)

(please see reverse side)

DD FANI 1473 EDITION OF I NOV65 S OSOLETZ

SECURITY CLASSFICATION OF THIS PAGE (When Deld Entlmr

SECURITY CLASSIFICATION Of THIS PAGIC(Ilm Dd* Ent.,

The Parallel Decomposition of Linear Programs
by Robert Entriken
SOL 89-17

Abstract

This thesis introduces a new calculus for manipulating linear-program decomposition
schemes. A linear program is represented by a communication network, which is
decomposed by splitting nodes in two, and a transformation is defined to recover
subproblems from the network. We also define a dual-symmctric oracle that provides
solutions to linear programs, and can be performed by the simplex method, nested
decomposition, and finally, parallel decomposition.

Two important classes of linear program serve as examples for the above calculus:
staircase linear programs and stochastic linear programs. For the former case, a
sophisticated yet experimental computer code has been written for an IBM 3090/600E
with six processors. The code performs the parallel decomposition algorithm and is
tested on twenty-two small to medium sized "real-world" problems. Experiments
show that in addition to speedups provided by decomposition alone, performance is
improved by using parallel processors.

SECURITY CLASSiFICATION OF Tul* PAGE(1ne . t* £nIoieE)

